Menu Close

calculate-A-n-1-n-n-2-e-x-2-3y-2-x-2-3y-2-dxdy-and-find-lim-n-A-n-




Question Number 59169 by maxmathsup by imad last updated on 05/May/19
calculate A_n =∫∫_([(1/n),n[^2 )     e^(−x^2 −3y^2 ) (√(x^2  +3y^2 ))dxdy  and find lim_(n→+∞)  A_n
calculateAn=[1n,n[2ex23y2x2+3y2dxdyandfindlimn+An
Commented by maxmathsup by imad last updated on 07/May/19
let consider the diffeomorphism  x=rcosθ  and y =(1/( (√3)))rsinθ  M_j = ((((∂ϕ_1 /∂r)          (∂ϕ_1 /∂θ))),(((∂ϕ_2 /∂r)             (∂ϕ_2 /∂θ))) )      = (((cosθ             −rsinθ)),((((sinθ)/( (√3)))                (r/( (√3)))cosθ)) )  ⇒det(M_j )=(r/( (√3)))  we have (1/n) ≤x≤n  and  (1/n)≤y≤n ⇒(2/n^2 ) ≤x^2  +y^2  ≤2n^2  ⇒((√2)/n) ≤r≤n(√(2 )) ⇒  A_n =∫∫_(((√2)/n)≤r≤n(√2)  and 0≤θ≤(π/2))     e^(−r^2 ) (√r^2 )(r/( (√3))) dr dθ =(1/( (√3))) ∫_((√2)/n) ^(n(√2)) r^2  e^(−r^2 ) dr .∫_0 ^(π/2)  dθ  =(π/(2(√3))) ∫_((√2)/n) ^(n(√2))   r^2  e^(−r^2 ) dr   by parts  u^′  =r e^(−r^2 )    and v =r  ∫_((√2)/n) ^(n(√2))   r^2  e^(−r^2 ) dr =[−(1/2)r e^(−r^2 )   ]_((√2)/n) ^(n(√2))     −∫_((√2)/n) ^(n(√2))   −(1/2) e^(−r^2 ) dr  =−(1/2){n(√2)e^(−2n^2 )   −((√2)/n) e^(−(2/n^2 ))       }   +(1/2) ∫_(((√2)/n) ) ^(n(√2))    e^(−r^2 ) dr ⇒  A_n =−(π/(4(√3))){  n(√2) e^(−2n^2 )     −((√2)/n) e^(−(2/n^2 )) } +(π/(4(√3))) ∫_(((√2)/n) ) ^(n(√2))     e^(−r^2 ) dr  ⇒  lim_(n→+∞)  A_n =(π/(4(√3))) ∫_0 ^∞   e^(−r^2 ) dr =(π/(4(√3))) ((√π)/2) =((π(√π))/(8(√3))) .
letconsiderthediffeomorphismx=rcosθandy=13rsinθMj=(φ1rφ1θφ2rφ2θ)=(cosθrsinθsinθ3r3cosθ)det(Mj)=r3wehave1nxnand1nyn2n2x2+y22n22nrn2An=2nrn2and0θπ2er2r2r3drdθ=132nn2r2er2dr.0π2dθ=π232nn2r2er2drbypartsu=rer2andv=r2nn2r2er2dr=[12rer2]2nn22nn212er2dr=12{n2e2n22ne2n2}+122nn2er2drAn=π43{n2e2n22ne2n2}+π432nn2er2drlimn+An=π430er2dr=π43π2=ππ83.

Leave a Reply

Your email address will not be published. Required fields are marked *