Menu Close

calculate-A-n-k-0-n-1-k-2k-3-interms-of-n-




Question Number 37890 by abdo mathsup 649 cc last updated on 19/Jun/18
calculate A_n = Σ_(k=0) ^n (−1)^k (2k+3) interms of n
calculateAn=k=0n(1)k(2k+3)intermsofn
Commented by prof Abdo imad last updated on 20/Jun/18
A_n =2 Σ_(k=0) ^n  k(−1)^k  +3 Σ_(k=0) ^n  (−1)^k  but  Σ_(k=0) ^n (−1)^k  = ((1−(−1)^(n+1) )/2)  let p(x)=Σ_(k=0) ^n  x^k   we have p(x)=((x^(n+1)  −1)/(x−1))  if x≠−1  and p^′ (x)=Σ_(k=1) ^n k x^(k−1)  ⇒  x p^′ (x)=Σ_(k=1) ^n  k x^k  ⇒Σ_(k=1) ^n  k(−1)^k =−p^′ (−1)  p^′ (x)=(((n+1)x^n (x−1)−x^(n+1)  +1)/((x−1)^2 ))  =(((n+1)x^(n+1)  −(n+1)x^n  −x^(n+1)  +1)/((x−1)^2 ))  =((nx^(n+1)  −(n+1)x^n  +1)/((x−1)^2 )) ⇒  p^′ (−1)= ((n(−1)^(n+1)  −(n+1)(−1)^n  +1)/4)  =((−n(−1)^n −(n+1)(−1)^n  +1)/4)  =((1−(2n+1)(−1)^n )/4) ⇒  A_n  = 2 (((2n+1)(−1)^n  −1)/4) +(3/2)( 1+(−1)^n )  = (((2n+1)(−1)^n −1 +3 +3(−1)^n )/2)  =(((2n+4)(−1)^n  +2)/2)  A_n =(n+2)(−1)^n  +1 .
An=2k=0nk(1)k+3k=0n(1)kbutk=0n(1)k=1(1)n+12letp(x)=k=0nxkwehavep(x)=xn+11x1ifx1andp(x)=k=1nkxk1xp(x)=k=1nkxkk=1nk(1)k=p(1)p(x)=(n+1)xn(x1)xn+1+1(x1)2=(n+1)xn+1(n+1)xnxn+1+1(x1)2=nxn+1(n+1)xn+1(x1)2p(1)=n(1)n+1(n+1)(1)n+14=n(1)n(n+1)(1)n+14=1(2n+1)(1)n4An=2(2n+1)(1)n14+32(1+(1)n)=(2n+1)(1)n1+3+3(1)n2=(2n+4)(1)n+22An=(n+2)(1)n+1.
Commented by math khazana by abdo last updated on 20/Jun/18
x≠1
x1

Leave a Reply

Your email address will not be published. Required fields are marked *