Menu Close

calculate-A-n-k-0-n-k-C-n-k-B-n-k-0-n-k-2-C-n-k-C-n-k-0-n-k-3-C-n-k-




Question Number 43007 by abdo.msup.com last updated on 06/Sep/18
calculate   A_n =Σ_(k=0) ^n  k C_n ^k   B_n = Σ_(k=0) ^n  k^2  C_n ^k   C_n =Σ_(k=0) ^n  k^3  C_n ^k
calculateAn=k=0nkCnkBn=k=0nk2CnkCn=k=0nk3Cnk
Commented by maxmathsup by imad last updated on 06/Sep/18
let p(x)= Σ_(k=0) ^n  C_n ^k  x^k   we have p(x) =(x+1)^n   and   p^′ (x)=Σ_(k=1) ^n  C_n ^k k x^(k−1)   ⇒x p^′ (x) = Σ_(k=0) ^n  C_n ^k k x^k  ⇒Σ_(k=0) ^n  kC_n ^k  =p′(1) but  p^′ (x)=n(x+1)^(n−1)  ⇒p^′ (1) =n 2^(n−1)  =A_n   also we have  p^′ (x)+x p^(′′) (x) =Σ_(k=1) ^n  k^2  C_n ^k  x^(k−1)  ⇒x p^′ (x)+x^2 p^(′′) (x)=Σ_(k=0) ^n  k^2  C_n ^k  x^k  ⇒  Σ_(k=0) ^n  k^2  C_n ^k  =p^′ (1) +p^(′′) (1)  but p^(′′) (x)=n(n−1)(x+1)^(n−2)  ⇒  p′′(1) =n(n−1)2^(n−2)  ⇒B_n =n 2^(n−1)  +n(n−1) 2^(n−2)   also wehave  p^′ (x) +xp^((2)) (x)  +2x p^((2)) (x) +x^2 p^((3)) (x) =Σ_(k=1) ^n  k^3  C_n ^k  x^(k−1)  ⇒  xp^′ (x)+3x^2 p^((2)) (x) +x^3  p^((3)) (x) =Σ_(k=0) ^n  k^3  C_n ^k  x^k  ⇒  Σ_(k=0) ^n  k^3  C_n ^k   =p^′ (1)+3 p^((2)) (1) +p^((3)) (1)   =n 2^(n−1)  +3n(n−1)2^(n−2)  +n(n−1)(n−2)2^(n−3)  .
letp(x)=k=0nCnkxkwehavep(x)=(x+1)nandp(x)=k=1nCnkkxk1xp(x)=k=0nCnkkxkk=0nkCnk=p(1)butp(x)=n(x+1)n1p(1)=n2n1=Analsowehavep(x)+xp(x)=k=1nk2Cnkxk1xp(x)+x2p(x)=k=0nk2Cnkxkk=0nk2Cnk=p(1)+p(1)butp(x)=n(n1)(x+1)n2p(1)=n(n1)2n2Bn=n2n1+n(n1)2n2alsowehavep(x)+xp(2)(x)+2xp(2)(x)+x2p(3)(x)=k=1nk3Cnkxk1xp(x)+3x2p(2)(x)+x3p(3)(x)=k=0nk3Cnkxkk=0nk3Cnk=p(1)+3p(2)(1)+p(3)(1)=n2n1+3n(n1)2n2+n(n1)(n2)2n3.
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Sep/18
(1+x)^n =nC_0 x^0 +nC_1 x+nC_2 x^2 +nC_3 x^3 +...+nC_n x^n   differdntiate w.r.t x both side  n(1+x)^(n−1) =0+nc_1 .1+nc_2 .2x+nc_3 .3x^2 +..+nc_n .nx^(n−1)   put x=1  n(2)^(n−1) =0.nc_0 +1.nc_1 +2.nc_2 +3.nc_3 +..+n.nc_n   n.2^(n−1) =Σ_(k=0) ^n k.nc_k →ans→A  n(1+x)^(n−1) =0+nc_1 .1+nc_2 .2x+nc_3 .3x^2 +..+nc_n .nx^(n−1)   multiply both side by x  nx(1+x)^(n−1) =0.x+nc_1 .1x+nc_2 .2x^2 +nc_3 .3x^3 +..+nc_n .nx^n   differentiate both side by x  n(n−1)x(1+x)^(n−2) +n(1+x)^(n−1) =  0+nc_1 .1^2 +nc_2 .2^2 .x+nc_3 .3^2 .x^2 +..+nc_n .n^2 .x^(n−1)   now put x=1 both side  n(n−1).2^(n−2) +n.2^(n−1) =0+1^2 .nc_1 +2^2 .nc_2 +3^2 .nc_3 +..+n^2 .nc_n   n(n−1).2^(n−2) +n.2^(n−1) =Σ_(k=0) ^n k^2 .nc_k →ansB
(1+x)n=nC0x0+nC1x+nC2x2+nC3x3++nCnxndifferdntiatew.r.txbothsiden(1+x)n1=0+nc1.1+nc2.2x+nc3.3x2+..+ncn.nxn1putx=1n(2)n1=0.nc0+1.nc1+2.nc2+3.nc3+..+n.ncnn.2n1=nk=0k.nckansAn(1+x)n1=0+nc1.1+nc2.2x+nc3.3x2+..+ncn.nxn1multiplybothsidebyxnx(1+x)n1=0.x+nc1.1x+nc2.2x2+nc3.3x3+..+ncn.nxndifferentiatebothsidebyxn(n1)x(1+x)n2+n(1+x)n1=0+nc1.12+nc2.22.x+nc3.32.x2+..+ncn.n2.xn1nowputx=1bothsiden(n1).2n2+n.2n1=0+12.nc1+22.nc2+32.nc3+..+n2.ncnn(n1).2n2+n.2n1=nk=0k2.nckansB

Leave a Reply

Your email address will not be published. Required fields are marked *