Menu Close

calculate-A-n-k-0-n-k-k-1-




Question Number 64444 by mathmax by abdo last updated on 18/Jul/19
calculate A_n =Σ_(k=0) ^n  (k/((k+1)!))
$${calculate}\:{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{k}}{\left({k}+\mathrm{1}\right)!} \\ $$
Commented by Prithwish sen last updated on 18/Jul/19
(1/(k!)) − (1/((k+1)!)) =1
$$\frac{\mathrm{1}}{\mathrm{k}!}\:−\:\frac{\mathrm{1}}{\left(\mathrm{k}+\mathrm{1}\right)!}\:=\mathrm{1} \\ $$
Commented by mathmax by abdo last updated on 22/Jul/19
A_n =Σ_(k=0) ^n  ((k+1−1)/((k+1)!)) =Σ_(k=0) ^n  ((1/(k!)) −(1/((k+1)!)))  let u_n  =(1/(n!)) ⇒  A_n =Σ_(k=0) ^n (u_k −u_(k+1) ) =u_0 −u_1  +u_1 −u_2  +....+u_n −u_(n+1)   =u_0 −u_(n+1) =1−(1/((n+1)!))  so A_n  =1−(1/((n+1)!)) .
$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \:\frac{{k}+\mathrm{1}−\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:\left(\frac{\mathrm{1}}{{k}!}\:−\frac{\mathrm{1}}{\left({k}+\mathrm{1}\right)!}\right)\:\:{let}\:{u}_{{n}} \:=\frac{\mathrm{1}}{{n}!}\:\Rightarrow \\ $$$${A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}} \left({u}_{{k}} −{u}_{{k}+\mathrm{1}} \right)\:={u}_{\mathrm{0}} −{u}_{\mathrm{1}} \:+{u}_{\mathrm{1}} −{u}_{\mathrm{2}} \:+….+{u}_{{n}} −{u}_{{n}+\mathrm{1}} \\ $$$$={u}_{\mathrm{0}} −{u}_{{n}+\mathrm{1}} =\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!} \\ $$$${so}\:{A}_{{n}} \:=\mathrm{1}−\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)!}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *