Question Number 47850 by maxmathsup by imad last updated on 15/Nov/18

Commented by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18

Commented by maxmathsup by imad last updated on 17/Nov/18
![changement ln(x)=−t give A_p =−∫_0 ^∞ ((e^(−pt) −1)/(−t)) (−e^(−t) )dt =−∫_0 ^∞ ((e^(−(p+1)t) −e^(−t) )/t) dt =∫_0 ^∞ ((e^(−t) −e^(−(p+1)t) )/t)dt let f(p) =∫_0 ^∞ ((e^(−t) −e^(−(p+1)t) )/t) dt ⇒f^′ (p) = ∫_0 ^∞ (∂/∂p)(((e^(−t) −e^(−t) e^(−pt) )/t))dt =∫_0 ^∞ ((−e^(−t) (−t)e^(−pt) )/t)dt = ∫_0 ^∞ e^(−(p+1)t) dt =[−(1/(p+1)) e^(−(p+1)t) ]_(t=0) ^∞ =(1/(p+1)) ⇒f(p) =ln(p+1) +λ but λ =lim_(x→0) (f(p)−ln(p+1))=0 ⇒ A_p =f(p) =ln(p+1) ★ ∫_0 ^1 ((x^p −1)/(ln(x)))dx=ln(p+1) ★ with p>0.](https://www.tinkutara.com/question/Q47982.png)
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18
![we know ∫_0 ^1 x^k dx=∣(x^(k+1) /(k+1))∣_0 ^1 =(1/(k+1)) now intregate both side w.r.t k in the interval say q to p ∫_q ^p dk[∫_0 ^1 x^k dx]=∫_q ^p (dk/(1+k)) taking help from advanced level intregation ∫_0 ^1 dx∫_q ^p x^k dk=∣ln(1+k)∣_q ^p ∫_0 ^1 dx[∣(x^k /(lnx))∣_q ^p ]=ln(((1+p)/(1+q))) ∫_0 ^1 ((x^p −x^q )/(lnx))dx=ln(((1+p)/(1+q)))=ln(1+p)−ln(1+q) now put q=0 both side ∫_0 ^1 ((x^p −1)/(lnx))dx=ln(1+p) ans](https://www.tinkutara.com/question/Q47891.png)