Menu Close

calculate-A-p-0-1-x-p-1-ln-x-dx-with-p-gt-0-




Question Number 47850 by maxmathsup by imad last updated on 15/Nov/18
calculate A_p =∫_0 ^1  ((x^p −1)/(ln(x)))dx with p>0.
calculateAp=01xp1ln(x)dxwithp>0.
Commented by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18
i have tried following way  A_p =∫_0 ^1 ((x^p −1)/(lnx))dx  (dA_p /dp)=∫_0 ^1 (∂/∂p)(((x^p −1)/(lnx)))dx  =∫_0 ^1 ((x^p lnx)/(lnx))dx  =∫_0 ^1 x^p dx  =∣(x^(p+1) /(p+1))∣_0 ^1 =(1/(p+1))  dA_p =(dp/(p+1))  ∫dA_p =∫(dp/(p+1))  A_p =ln(p+1)+c  now in question p>0  so here i stopped further...  but if p=0 assumed  then ∫_0 ^1 ((x^p −1)/(lnx))dx  ∫_0 ^1 ((x^0 −1)/(lnx))dx=0=A_(p=0)   then   A_p =ln(p+1)+c  A_(p=0) =ln(0+1)+c  0=0+c  c=0  A_p =ln(p+1)  so A_p =∫_0 ^1 ((x^p −1)/(lnx))dx=ln(p+1)  pls check sir...
ihavetriedfollowingwayAp=01xp1lnxdxdApdp=01p(xp1lnx)dx=01xplnxlnxdx=01xpdx=∣xp+1p+101=1p+1dAp=dpp+1dAp=dpp+1Ap=ln(p+1)+cnowinquestionp>0sohereistoppedfurtherbutifp=0assumedthen01xp1lnxdx01x01lnxdx=0=Ap=0thenAp=ln(p+1)+cAp=0=ln(0+1)+c0=0+cc=0Ap=ln(p+1)soAp=01xp1lnxdx=ln(p+1)plschecksir
Commented by maxmathsup by imad last updated on 17/Nov/18
changement ln(x)=−t give A_p =−∫_0 ^∞   ((e^(−pt)  −1)/(−t)) (−e^(−t) )dt  =−∫_0 ^∞   ((e^(−(p+1)t)  −e^(−t) )/t) dt =∫_0 ^∞  ((e^(−t)  −e^(−(p+1)t) )/t)dt let   f(p) =∫_0 ^∞   ((e^(−t)  −e^(−(p+1)t) )/t) dt ⇒f^′ (p) = ∫_0 ^∞  (∂/∂p)(((e^(−t)  −e^(−t)  e^(−pt) )/t))dt  =∫_0 ^∞  ((−e^(−t) (−t)e^(−pt) )/t)dt = ∫_0 ^∞  e^(−(p+1)t) dt =[−(1/(p+1)) e^(−(p+1)t) ]_(t=0) ^∞   =(1/(p+1)) ⇒f(p) =ln(p+1) +λ   but λ =lim_(x→0) (f(p)−ln(p+1))=0 ⇒  A_p =f(p) =ln(p+1)  ★ ∫_0 ^1  ((x^p −1)/(ln(x)))dx=ln(p+1) ★ with p>0.
changementln(x)=tgiveAp=0ept1t(et)dt=0e(p+1)tettdt=0ete(p+1)ttdtletf(p)=0ete(p+1)ttdtf(p)=0p(eteteptt)dt=0et(t)epttdt=0e(p+1)tdt=[1p+1e(p+1)t]t=0=1p+1f(p)=ln(p+1)+λbutλ=limx0(f(p)ln(p+1))=0Ap=f(p)=ln(p+1)01xp1ln(x)dx=ln(p+1)withp>0.
Answered by tanmay.chaudhury50@gmail.com last updated on 16/Nov/18
we know  ∫_0 ^1 x^k dx=∣(x^(k+1) /(k+1))∣_0 ^1 =(1/(k+1))  now intregate both side w.r.t k in the interval  say q to p  ∫_q ^p dk[∫_0 ^1 x^k dx]=∫_q ^p (dk/(1+k))  taking help from advanced level intregation  ∫_0 ^1 dx∫_q ^p x^k dk=∣ln(1+k)∣_q ^p   ∫_0 ^1 dx[∣(x^k /(lnx))∣_q ^p ]=ln(((1+p)/(1+q)))  ∫_0 ^1 ((x^p −x^q )/(lnx))dx=ln(((1+p)/(1+q)))=ln(1+p)−ln(1+q)  now put q=0 both side  ∫_0 ^1 ((x^p −1)/(lnx))dx=ln(1+p) ans
weknow01xkdx=∣xk+1k+101=1k+1nowintregatebothsidew.r.tkintheintervalsayqtopqpdk[01xkdx]=qpdk1+ktakinghelpfromadvancedlevelintregation01dxqpxkdk=∣ln(1+k)qp01dx[xklnxqp]=ln(1+p1+q)01xpxqlnxdx=ln(1+p1+q)=ln(1+p)ln(1+q)nowputq=0bothside01xp1lnxdx=ln(1+p)ans

Leave a Reply

Your email address will not be published. Required fields are marked *