calculate-arctan-2x-2-1-x-2-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 84759 by mathmax by abdo last updated on 15/Mar/20 calculate∫−∞+∞arctan(2x2)1+x2dx Answered by mind is power last updated on 17/Mar/20 letf(t)=∫−∞+∞arctan(tx2)1+x2dxf(0)=0f′(t)=∫−∞+∞x2dx(1+x2)(1+t2x4)=f′(t)=2iπRes(i,eiπ4t,ei3π4t)=2iπ.−12i(1+t2)+2iπ.it(1+it)(4te3iπ4)+2iπ.−it(1−it)4teiπ4=−π1+t2+2π(t+i)(4te−iπ4)+2π(t−i)(4teiπ4)−π1+t2+4π.Re(1(t+i)(4te−iπ4))−π1+t2+4π.Re((t−i)(22+i22)(t2+1)(4t))−π1+t2+π.22.tt2+1+π22t(1+t2)f(t)=−πarctan(t)+π2{∫tdtt2+1+∫dtt(1+t2)∫(t+1t)dt(1+t2)=∫t+1t(1+t2)dtu=t⇒=2∫u2+1(1+u4)du=∫2(u2+1)(u2−2u+1)(u2+2u+1)du=∫duu2−2u+1+∫duu2+2u+1=∫du(u−12)2+12+∫du(u+12)2+12=∫2du(2u−1)2+1+∫2du(2u+1)2+1=2{tan−(2u−1)+tan−(2u+1)}f(t)=−πtan−(t)+π{tan−(2t−1)+tan−(2t+1)}+cf(0)=0⇒c=0f(t)=−πtan−(t)+π{tan−(2t−1)+tan−(2t+1)f(2)=∫tan−(2x2)1+x2dx=−πtan−(2)+π{tan−(3)+tan−(5)}=π{−tan−(2)+tan−(3)+tan−(5)} Commented by abdomathmax last updated on 18/Mar/20 thankyousir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: STATEMENT-1-For-every-natural-number-n-2-1-1-1-2-1-n-gt-n-and-STATEMENT-2-For-every-natural-number-n-2-n-n-1-lt-n-1-Next Next post: A-particle-P-is-sliding-down-a-frictionless-hemispherical-bowl-It-passes-the-point-A-at-t-0-At-this-instant-of-time-the-horizontal-component-of-its-velocity-is-v-A-bead-Q-of-the-same-mass-as-P-i Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.