Menu Close

calculate-arctan-2x-2-1-x-2-dx-




Question Number 84759 by mathmax by abdo last updated on 15/Mar/20
calculate  ∫_(−∞) ^(+∞)   ((arctan(2x^2 ))/(1+x^2 ))dx
calculate+arctan(2x2)1+x2dx
Answered by mind is power last updated on 17/Mar/20
let f(t)=∫_(−∞) ^(+∞) ((arctan(tx^2 ))/(1+x^2 ))dx  f(0)=0  f′(t)=∫_(−∞) ^(+∞) ((x^2 dx)/((1+x^2 )(1+t^2 x^4 )))=  f′(t)=2iπRes(i,(e^(i(π/4)) /( (√t))),(e^(i((3π)/4)) /( (√t))))  =2iπ.((−1)/(2i(1+t^2 )))+2iπ.((i/t)/((1+(i/t))(4(√t)e^((3iπ)/4) )))+2iπ.(((−i)/t)/((1−(i/t))4(√t)e^(i(π/4)) ))  =−(π/(1+t^2 ))+((2π)/((t+i)(4(√t)e^(−((iπ)/4)) )))+((2π)/((t−i)(4(√t)e^(i(π/4)) )))  −(π/(1+t^2 ))+4π.Re((1/((t+i)(4(√t)e^(−((iπ)/4)) ))))  −(π/(1+t^2 ))+4π.Re((((t−i)(((√2)/2)+i((√2)/2)))/((t^2 +1)(4(√t)))))  −(π/(1+t^2 ))+π.((√2)/2).((√t)/(t^2 +1))+((π(√2))/(2(√t)(1+t^2 )))  f(t)=−πarctan(t)+(π/( (√2))){∫(((√t)dt)/(t^2 +1))+∫(dt/( (√t)(1+t^2 )))  ∫((√t)+(1/( (√t))))(dt/((1+t^2 )))  =∫((t+1)/( (√t)(1+t^2 )))dt  u=(√t)⇒  =2∫((u^2 +1)/((1+u^4 )))du=∫((2(u^2 +1))/((u^2 −(√2)u+1)(u^2 +(√2)u+1)))du  =∫(du/(u^2 −(√2)u+1))+∫(du/(u^2 +(√2)u+1))  =∫(du/((u−(1/( (√2))))^2 +(1/2)))+∫(du/((u+(1/( (√2))))^2 +(1/2)))  =∫((2du)/(((√2)u−1)^2 +1))+∫((2du)/(((√2)u+1)^2 +1))  =(√2){tan^− ((√2)u−1)+tan^− ((√2)u+1)}  f(t)=−πtan^− (t)+π{tan^− ((√(2t))−1)+tan^− ((√(2t))+1)}+c  f(0)=0⇒  c=0  f(t)=−πtan^− (t)+π{tan^− ((√(2t))−1)+tan^− ((√(2t))+1)  f(2)=∫((tan^− (2x^2 ))/(1+x^2 ))dx=−πtan^− (2)+π{tan^− (3)+tan^− (5)}  =π{−tan^− (2)+tan^− (3)+tan^− (5)}
letf(t)=+arctan(tx2)1+x2dxf(0)=0f(t)=+x2dx(1+x2)(1+t2x4)=f(t)=2iπRes(i,eiπ4t,ei3π4t)=2iπ.12i(1+t2)+2iπ.it(1+it)(4te3iπ4)+2iπ.it(1it)4teiπ4=π1+t2+2π(t+i)(4teiπ4)+2π(ti)(4teiπ4)π1+t2+4π.Re(1(t+i)(4teiπ4))π1+t2+4π.Re((ti)(22+i22)(t2+1)(4t))π1+t2+π.22.tt2+1+π22t(1+t2)f(t)=πarctan(t)+π2{tdtt2+1+dtt(1+t2)(t+1t)dt(1+t2)=t+1t(1+t2)dtu=t=2u2+1(1+u4)du=2(u2+1)(u22u+1)(u2+2u+1)du=duu22u+1+duu2+2u+1=du(u12)2+12+du(u+12)2+12=2du(2u1)2+1+2du(2u+1)2+1=2{tan(2u1)+tan(2u+1)}f(t)=πtan(t)+π{tan(2t1)+tan(2t+1)}+cf(0)=0c=0f(t)=πtan(t)+π{tan(2t1)+tan(2t+1)f(2)=tan(2x2)1+x2dx=πtan(2)+π{tan(3)+tan(5)}=π{tan(2)+tan(3)+tan(5)}
Commented by abdomathmax last updated on 18/Mar/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *