Question Number 78625 by mathmax by abdo last updated on 19/Jan/20
$${calculate}\:\:\int_{−\infty} ^{+\infty} \:\frac{{arctan}\left({x}^{\mathrm{2}} −\mathrm{3}\right)}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 19/Jan/20
$${let}\:{W}\left({z}\right)=\frac{{arctan}\left({z}^{\mathrm{2}} −\mathrm{3}\right)}{\left({z}^{\mathrm{2}} \:+{z}+\mathrm{1}\right)^{\mathrm{2}} }\:\:{poles}\:{of}\:{W}? \\ $$$${z}^{\mathrm{2}} +{z}+\mathrm{1}\:=\mathrm{0}\:\rightarrow\Delta\:=\mathrm{1}−\mathrm{4}\:=−\mathrm{3}\:\Rightarrow{z}_{\mathrm{1}} =\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${z}_{\mathrm{2}} ={e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \:\Rightarrow{W}\left({z}\right)\:=\frac{{arctan}\left({z}^{\mathrm{2}} −\mathrm{3}\right)}{\left({z}−{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} \left({z}−{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} } \\ $$$$\int_{−\infty} ^{+\infty} \:{W}\left({z}\right){dz}\:=\mathrm{2}{i}\pi{Res}\left({W},{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right) \\ $$$${Res}\left({W},{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \right)\:={lim}_{{z}\rightarrow{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} } \:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left({z}−{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} {W}\left({z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} } \:\:\:\left\{\:\frac{{arctan}\left({z}^{\mathrm{2}} −\mathrm{3}\right)}{\left({z}−{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} }\right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} } \:\:\:\frac{\frac{\mathrm{2}{z}}{\mathrm{1}+\left({z}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{2}} }×\left({z}−{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right)^{\mathrm{2}} −\mathrm{2}\left({z}−{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right){arctan}\left({z}^{\mathrm{2}} −\mathrm{3}\right)}{\left({z}−{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right)^{\mathrm{4}} } \\ $$$$={lim}_{{z}\rightarrow{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} } \:\:\:\frac{\frac{\mathrm{2}{z}\left({z}−{e}^{−{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right)}{\mathrm{1}+\left({z}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{2}} }−\mathrm{2}{arctan}\left({z}^{\mathrm{2}} −\mathrm{3}\right)}{\left({z}−{e}^{−\frac{\mathrm{2}{i}\pi}{\mathrm{3}}} \right)^{\mathrm{3}} } \\ $$$$=\frac{\frac{\mathrm{2}{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \left(\mathrm{2}{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right.}{\mathrm{1}+\left({e}^{\frac{{i}\mathrm{4}\pi}{\mathrm{3}}} −\mathrm{3}\right)^{\mathrm{2}} }−\mathrm{2}{arctan}\left({e}^{\frac{{i}\mathrm{4}\pi}{\mathrm{3}}} −\mathrm{3}\right)}{\left(\mathrm{2}{isin}\left(\frac{\mathrm{2}\pi}{\mathrm{3}}\right)\right)^{\mathrm{3}} } \\ $$$$=\frac{\frac{\mathrm{2}{i}\sqrt{\mathrm{3}}{e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} }{\mathrm{1}+\left({e}^{\frac{{i}\mathrm{4}\pi}{\mathrm{3}}} −\mathrm{3}\right)^{\mathrm{2}} }−\mathrm{2}{arctan}\left({e}^{\frac{{i}\mathrm{4}\pi}{\mathrm{3}}} −\mathrm{3}\right)}{\left({i}\sqrt{\mathrm{3}}\right)^{\mathrm{3}} }\:\:….{be}\:{continued}… \\ $$