Menu Close

Calculate-B-1-1-sin-x-dx-using-u-tan-x-2-




Question Number 169250 by mathocean1 last updated on 26/Apr/22
Calculate B=∫(1/(1+sin(x)))dx using u=tan((x/2))
CalculateB=11+sin(x)dxusingu=tan(x2)
Commented by infinityaction last updated on 27/Apr/22
   I = ∫(dx/((sin (x/2) + cos (x/2))^2 ))    I = ∫((sec^2 x/2)/((1+tan x/2)^2 ))dx     u = tan x/2     du = (1/2)sec^2 x/2     I  = ∫((2du)/((1+u)^2 ))     I   =  −(2/(1+u)) + c      I   = −(2/(1+tan x/2)) + c
I=dx(sinx2+cosx2)2I=sec2x/2(1+tanx/2)2dxu=tanx/2du=12sec2x/2I=2du(1+u)2I=21+u+cI=21+tanx/2+c
Answered by MikeH last updated on 27/Apr/22
sin x = ((2t)/(1+t^2 ))  dx = ((2dt)/(1+t^2 ))  ⇒ B = ∫(1/((1+((2t)/(1+t^2 ))))).((2dt)/(1+t^2 )) = ∫((2dt)/(t^2 +2t+1))  B = 2∫(dt/((1+t)^2 )) = −(2/(1+t)) + k  B = −(2/(1+tan((x/2))))+k
sinx=2t1+t2dx=2dt1+t2B=1(1+2t1+t2).2dt1+t2=2dtt2+2t+1B=2dt(1+t)2=21+t+kB=21+tan(x2)+k

Leave a Reply

Your email address will not be published. Required fields are marked *