Menu Close

calculate-B-n-k-0-n-1-k-2k-2-1-interms-of-n-




Question Number 37891 by abdo mathsup 649 cc last updated on 19/Jun/18
calculate B_n = Σ_(k=0) ^n  (−1)^k (2k^2  +1) interms of n.
calculateBn=k=0n(1)k(2k2+1)intermsofn.
Commented by prof Abdo imad last updated on 24/Jun/18
B_n = 2Σ_(k=0) ^n k^2 (−1)^k  +Σ_(k=0) ^n (−1)^k   let p(x)=Σ_(k=0) ^n  x^k    with x≠1  p^′ (x)=Σ_(k=1) ^n k x^(k−1)  ⇒ x p^′ (x)=Σ_(k=1) ^n  kx^k  ⇒  Σ_(k=1) ^n  k^2 x^(k−1) =p^′ (x) +xp′′(x) ⇒  Σ_(k=1) ^n k^2 x^k =xp^′ (x)+x^2 p′′(x) but  p(x)=((x^(n+1) −1)/(x−1)) ⇒p^′ (x)=((n x^(n+1)  −(n+1)x^n +1)/((x−1)^2 ))  p^(′′) (x)=(((n(n+1)x^n −n(n+1)x^(n−1) )(x−1)^2  −2(x−1)(nx^(n+1) −(n+1)x^n +1))/((x−1)^4 ))  =(((x−1)n(n+1)(x^n −x^(n−1) )−2(nx^(n+1) −(n+1)x^n  +1))/((x−1)^3 ))  Σ_(k=1) ^n  k^2 (−1)^k  =−p^′ (−1) +p^(′′) (−1)  =−((n(−1)^(n+1) −(n+1)(−1)^n +1)/4) +((−2n(n+1)((−1)^n −(−1)^(n−1) )−2{n(−1)^(n+1) −(n+1)(−1)^n +1})/(−8))  also Σ_(k=0) ^n (−1)^k =  ((1−(−1)^(n+1) )/2)  so the value of S is determined.
Bn=2k=0nk2(1)k+k=0n(1)kletp(x)=k=0nxkwithx1p(x)=k=1nkxk1xp(x)=k=1nkxkk=1nk2xk1=p(x)+xp(x)k=1nk2xk=xp(x)+x2p(x)butp(x)=xn+11x1p(x)=nxn+1(n+1)xn+1(x1)2p(x)=(n(n+1)xnn(n+1)xn1)(x1)22(x1)(nxn+1(n+1)xn+1)(x1)4=(x1)n(n+1)(xnxn1)2(nxn+1(n+1)xn+1)(x1)3k=1nk2(1)k=p(1)+p(1)=n(1)n+1(n+1)(1)n+14+2n(n+1)((1)n(1)n1)2{n(1)n+1(n+1)(1)n+1}8alsok=0n(1)k=1(1)n+12sothevalueofSisdetermined.

Leave a Reply

Your email address will not be published. Required fields are marked *