Question Number 86375 by mathmax by abdo last updated on 28/Mar/20

Commented by mathmax by abdo last updated on 30/Mar/20
![first let find the value of this integral we have ∫ (dx/(x^2 −x +1)) =∫ (dx/((x−(1/2))^2 +(3/4))) =_(x−(1/2)=((√3)/2)u) (4/3)∫ (1/(u^2 +1))×((√3)/2)du =(2/( (√3))) arctan(u) +c =(2/( (√3)))arctan(((2x−1)/( (√3))))+C ⇒ ∫_0 ^∞ (dx/(x^2 −x+1)) =[(2/( (√3)))arctan(((2x−1)/( (√3))))]_0 ^(+∞) =(2/( (√3))){ (π/2) +arctan((1/( (√3))))} =(2/( (√3))){(π/2) +(π/6)} =(2/( (√3))){((4π)/6)} =(2/( (√3)))×((2π)/3) =((4π)/(3(√3))) now let use complex method the problem come from 0 ! x^2 −x+1 =0 →Δ =−3 ⇒x_1 =((1+i(√3))/2)=e^((iπ)/3) and x_2 =((1−i(√3))/2) =e^(−((iπ)/3)) ⇒∫ (dx/(x^2 −x+1)) =∫ (dx/((x−e^((iπ)/3) )(x−e^(−((iπ)/3)) )))=(1/(2isin((π/3))))∫ ((1/(x−e^((iπ)/3) ))−(1/(x−e^(−((iπ)/3)) )))dx =(1/(i(√3)))ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) ))) +C ⇒ ∫_0 ^∞ (dx/(x^2 −x+1)) =(1/(i(√3)))[ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) )))]_0 ^(+∞) =(1/(i(√3))){−ln( e^((2iπ)/3) )} =−(1/(i(√3)))(((2iπ)/3)) =((2π)/(3(√3))) not correct the problem comes from0 let change 0 by 1 ∫_1 ^(+∞) (dx/(x^2 −x+1)) =(2/( (√3)))[arctan(((2x−1)/( (√3))))]_1 ^(+∞) =(2/( (√3))){ (π/2) −arctan((1/( (√3))))} =(2/( (√3))){(π/2)−(π/6)} =(2/( (√3))){(π/3)} =((2π)/(3(√3))) complex method→∫_1 ^(+∞) (dx/(x^2 −x+1)) =(1/(i(√3)))[ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) )))]_1 ^(+∞) =(1/(i(√3)))(−ln(((1−e^((iπ)/3) )/(1−e^(−((iπ)/3)) )))) we have ((1−e^((iπ)/3) )/(1−e^(−((iπ)/3)) )) =((1−(1/2)−i((√3)/2))/(1−(1/2)+i((√3)/2))) =(((1/2)−i((√3)/2))/((1/2)+((i(√3))/2))) =(e^(−((iπ)/3)) /e^((iπ)/3) ) =e^(−((2iπ)/3)) ⇒ ln(...) =−((2iπ)/3) ⇒∫_1 ^(+∞) (dx/(x^2 −x+1)) =(1/(i(√3)))(((−2iπ)/3)) =((−2π)/(3(√3))) (probleme of −) i have 2 remark here dont use complex method if you have 0 in the integral the function x→(1/(x^2 −x+1)) is ≥0 ⇒∫_1 ^(+∞) (dx/(x^2 −x)) ≥0 so you must eradicate − in the value....](https://www.tinkutara.com/question/Q86754.png)
Commented by redmiiuser last updated on 31/Mar/20

Answered by redmiiuser last updated on 30/Mar/20

Commented by redmiiuser last updated on 30/Mar/20

Commented by mathmax by abdo last updated on 01/Apr/20

Commented by redmiiuser last updated on 01/Apr/20

Commented by redmiiuser last updated on 03/Apr/20
