Menu Close

calculate-by-complex-method-0-dx-x-2-x-1-




Question Number 86375 by mathmax by abdo last updated on 28/Mar/20
calculate by complex method  ∫_0 ^∞     (dx/(x^2 −x+1))
calculatebycomplexmethod0dxx2x+1
Commented by mathmax by abdo last updated on 30/Mar/20
first let find the value of this integral  we have ∫  (dx/(x^2 −x +1)) =∫  (dx/((x−(1/2))^2  +(3/4))) =_(x−(1/2)=((√3)/2)u)   (4/3)∫  (1/(u^2  +1))×((√3)/2)du  =(2/( (√3))) arctan(u) +c =(2/( (√3)))arctan(((2x−1)/( (√3))))+C ⇒  ∫_0 ^∞   (dx/(x^2 −x+1)) =[(2/( (√3)))arctan(((2x−1)/( (√3))))]_0 ^(+∞)  =(2/( (√3))){ (π/2) +arctan((1/( (√3))))}  =(2/( (√3))){(π/2) +(π/6)} =(2/( (√3))){((4π)/6)} =(2/( (√3)))×((2π)/3) =((4π)/(3(√3)))  now  let use complex method  the problem come from 0 !  x^2 −x+1 =0 →Δ =−3 ⇒x_1 =((1+i(√3))/2)=e^((iπ)/3)  and x_2 =((1−i(√3))/2) =e^(−((iπ)/3))   ⇒∫  (dx/(x^2 −x+1)) =∫  (dx/((x−e^((iπ)/3) )(x−e^(−((iπ)/3)) )))=(1/(2isin((π/3))))∫ ((1/(x−e^((iπ)/3) ))−(1/(x−e^(−((iπ)/3)) )))dx  =(1/(i(√3)))ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) ))) +C ⇒  ∫_0 ^∞   (dx/(x^2 −x+1)) =(1/(i(√3)))[ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) )))]_0 ^(+∞)  =(1/(i(√3))){−ln( e^((2iπ)/3) )}  =−(1/(i(√3)))(((2iπ)/3)) =((2π)/(3(√3)))  not correct the problem comes from0  let change 0 by 1  ∫_1 ^(+∞)   (dx/(x^2 −x+1)) =(2/( (√3)))[arctan(((2x−1)/( (√3))))]_1 ^(+∞)   =(2/( (√3))){ (π/2) −arctan((1/( (√3))))} =(2/( (√3))){(π/2)−(π/6)} =(2/( (√3))){(π/3)} =((2π)/(3(√3)))  complex method→∫_1 ^(+∞)  (dx/(x^2 −x+1)) =(1/(i(√3)))[ln(((x−e^((iπ)/3) )/(x−e^(−((iπ)/3)) )))]_1 ^(+∞)   =(1/(i(√3)))(−ln(((1−e^((iπ)/3) )/(1−e^(−((iπ)/3)) ))))  we have  ((1−e^((iπ)/3) )/(1−e^(−((iπ)/3)) )) =((1−(1/2)−i((√3)/2))/(1−(1/2)+i((√3)/2))) =(((1/2)−i((√3)/2))/((1/2)+((i(√3))/2))) =(e^(−((iπ)/3)) /e^((iπ)/3) ) =e^(−((2iπ)/3))  ⇒  ln(...) =−((2iπ)/3) ⇒∫_1 ^(+∞)  (dx/(x^2 −x+1)) =(1/(i(√3)))(((−2iπ)/3)) =((−2π)/(3(√3)))  (probleme of −)  i have 2 remark here    dont use complex method if you have 0 in the integral  the function x→(1/(x^2 −x+1)) is ≥0 ⇒∫_1 ^(+∞)  (dx/(x^2 −x)) ≥0 so  you must eradicate − in the value....
firstletfindthevalueofthisintegralwehavedxx2x+1=dx(x12)2+34=x12=32u431u2+1×32du=23arctan(u)+c=23arctan(2x13)+C0dxx2x+1=[23arctan(2x13)]0+=23{π2+arctan(13)}=23{π2+π6}=23{4π6}=23×2π3=4π33nowletusecomplexmethodtheproblemcomefrom0!x2x+1=0Δ=3x1=1+i32=eiπ3andx2=1i32=eiπ3dxx2x+1=dx(xeiπ3)(xeiπ3)=12isin(π3)(1xeiπ31xeiπ3)dx=1i3ln(xeiπ3xeiπ3)+C0dxx2x+1=1i3[ln(xeiπ3xeiπ3)]0+=1i3{ln(e2iπ3)}=1i3(2iπ3)=2π33notcorrecttheproblemcomesfrom0letchange0by11+dxx2x+1=23[arctan(2x13)]1+=23{π2arctan(13)}=23{π2π6}=23{π3}=2π33complexmethod1+dxx2x+1=1i3[ln(xeiπ3xeiπ3)]1+=1i3(ln(1eiπ31eiπ3))wehave1eiπ31eiπ3=112i32112+i32=12i3212+i32=eiπ3eiπ3=e2iπ3ln()=2iπ31+dxx2x+1=1i3(2iπ3)=2π33(problemeof)ihave2remarkheredontusecomplexmethodifyouhave0intheintegralthefunctionx1x2x+1is01+dxx2x0soyoumusteradicateinthevalue.
Commented by redmiiuser last updated on 31/Mar/20
sir can you pls comment  on my process.
sircanyouplscommentonmyprocess.
Answered by redmiiuser last updated on 30/Mar/20
let x^2 −x=z  (z+1)^(−1)   =Σ_(n=0) ^∞ (−1)^n .z^n   =Σ_(n=0) ^∞ (−1)^n .(x^2 −x)^n   =Σ_(n=0) ^∞ (−1)^n .Σ_(k=0) ^n C_k ^n .(−1)^(n−k) .(x^2 )^k .(x)^(n−k)      =Σ_(n=0) ^∞ Σ_(k=0) ^n (−1)^(2n−k) .C_k ^n .x^(2k+n−k)   ∫^∞ _0 Σ_(n=0) ^∞ Σ_(k=0) ^n i^(2n−k) .C_k ^n .x^(k+n) .dx  =((Σ_(n=0) ^∞ Σ_(k=0) ^n i^(2n−k) .C_k ^n .(∞)^(k+n+1) )/(k+n+1))
letx2x=z(z+1)1=n=0(1)n.zn=n=0(1)n.(x2x)n=n=0(1)n.nk=0Cnk.(1)nk.(x2)k.(x)nk=n=0nk=0(1)2nk.Cnk.x2k+nk0n=0nk=0i2nk.Cnk.xk+n.dx=n=0nk=0i2nk.Cnk.()k+n+1k+n+1
Commented by redmiiuser last updated on 30/Mar/20
sir can you pls check  the answer.
sircanyouplschecktheanswer.
Commented by mathmax by abdo last updated on 01/Apr/20
not correct sir becsuse (1/(1+z)) =Σ_(n=0) ^∞ (−1)^n z^n   if we have ∣z∣<1  you can this if you have ∣x^2 −x∣<1...
notcorrectsirbecsuse11+z=n=0(1)nznifwehavez∣<1youcanthisifyouhavex2x∣<1
Commented by redmiiuser last updated on 01/Apr/20
sir can you pls check   (1/(z+1)) expansion by  Taloyr′s  formula.
sircanyouplscheck1z+1expansionbyTaloyrsformula.
Commented by redmiiuser last updated on 03/Apr/20
for z<1 like z=−l  ∴(1+z)^(−1) =(1−l)^(−1)   =Σ_(n=0 ) ^∞ l^n
forz<1likez=l(1+z)1=(1l)1=n=0ln

Leave a Reply

Your email address will not be published. Required fields are marked *