Menu Close

calculate-by-complex-method-1-xdx-x-4-1-




Question Number 87306 by abdomathmax last updated on 03/Apr/20
calculate by complex method ∫_1 ^(+∞)  ((xdx)/(x^4  +1))
calculatebycomplexmethod1+xdxx4+1
Commented by Ar Brandon last updated on 03/Apr/20
My  suggestion  ∫_1 ^(+∞) (x/(x^4 +1))dx=∫_1 ^(+∞) (x/(1+(x^2 )^2 ))dx=(1/2)∫_1 ^(+∞) ((2x)/(1+(x^2 )^2 ))dx                               =(1/2)[arctan(x^2 )]_1 ^(+∞) =(1/2)((π/2))−(1/2)((π/4))=(π/8)
Mysuggestion1+xx4+1dx=1+x1+(x2)2dx=121+2x1+(x2)2dx=12[arctan(x2)]1+=12(π2)12(π4)=π8
Commented by Ar Brandon last updated on 04/Apr/20
By  complex  method  Let  x^4 +1=0⇒x^4 =−1  ∣x^4 ∣=1  and  arg(x^4 )=π mod(2π) ⇒∣x∣=1  and  arg(x)=(π/4)mod((π/2))  ⇒x_k =e^((2k+1)(π/4)i)     k∈Z  ⇒x^4 +1=Π_(k=−2) ^1 (x−x_k )  ⇒(x/(x^4 +1))=(x/(Π_(k=−2) ^1 (x−x_k )))=Σ_(k=−2) ^1 (a_k /((x−x_k )))  a_k =(x_k /(4x_k ^3 ))   i.e ((P(x_k ))/(Q′(x_k )))  ⇒(x/(x^4 +1))=Σ_(k=−2) ^1 (1/(4(x_k ^2 )(x−x_k )))  ∫_1 ^(+∞) (x/(x^4 +1))dx=∫_1 ^(+∞) Σ_(k=−2) ^1 (1/(4(x_k ^2 )(x−x_k )))dx                              =∫_1 ^(+∞) (1/(4i(x+((√2)/2)+i((√2)/2))))dx−∫_1 ^(+∞) (1/(4i(x−((√2)/2)+i((√2)/2))))dx                                  +∫_1 ^(+∞) (1/(4i(x−((√2)/2)−i((√2)/2))))dx−∫_1 ^(+∞) (1/(4i(x+((√2)/2)−i((√2)/2))))dx
BycomplexmethodLetx4+1=0x4=1x4∣=1andarg(x4)=πmod(2π)⇒∣x∣=1andarg(x)=π4mod(π2)xk=e(2k+1)π4ikZx4+1=1k=2(xxk)xx4+1=x1k=2(xxk)=1k=2ak(xxk)ak=xk4xk3i.eP(xk)Q(xk)xx4+1=1k=214(xk2)(xxk)1+xx4+1dx=1+1k=214(xk2)(xxk)dx=1+14i(x+22+i22)dx1+14i(x22+i22)dx+1+14i(x22i22)dx1+14i(x+22i22)dx
Commented by Ar Brandon last updated on 04/Apr/20
=((ln∞)/(4i))−(1/(4i))ln(∣1+((√2)/2)+i((√2)/2)∣)−((ln∞)/(4i))+(1/(4i))ln(∣1−((√2)/2)+i((√2)/2)∣)    +((ln∞)/(4i))−(1/(4i))ln(∣1−((√2)/2)−i((√2)/2)∣)−((ln∞)/(4i))+(1/(4i))ln(∣1+((√2)/2)−i((√2)/2)∣)  =(1/(4i))ln(∣1+((√2)/2)−i((√2)/2)∣)−(1/(4i))ln(∣1−((√2)/2)−i((√2)/2)∣)    +(1/(4i))ln(∣1−((√2)/2)+i((√2)/2)∣)−(1/(4i))ln(∣1+((√2)/2)+i((√2)/2)∣)
=ln4i14iln(1+22+i22)ln4i+14iln(122+i22)+ln4i14iln(122i22)ln4i+14iln(1+22i22)=14iln(1+22i22)14iln(122i22)+14iln(122+i22)14iln(1+22+i22)
Commented by mathmax by abdo last updated on 04/Apr/20
thanks sir
thankssir
Commented by mathmax by abdo last updated on 04/Apr/20
let decompose F(x)=(x/(x^4  +1))  poles of F?  x^4 +1 =0 ⇔ x^4 =e^((2k+1)π)  ⇒ x_k =e^((i(2k+1)π)/4)  and k∈[[0,3]]  F(x) =Σ_(k.=0) ^3  (a_k /(x−x_k ))  with a_(k ) =(x_k /(4x_k ^3 )) =−(1/4)x_k ^2  =−(1/4)e^((i(2k+1)π)/2)   =−(1/4) (i)^(2k+1)  =−(1/4)(−1)^k  i =(i/4)(−1)^k  ⇒  ∫_1 ^(+∞)  F(x)dx =(i/4) Σ_(k=0) ^3  (−1)^k  ∫_1 ^(+∞)   (dx/(x−x_k ))  we have x_0 =e^((iπ)/4)     , x_1 =e^((i3π)/4)   , x_2 =e^(i((5π)/4))  =x_1 ^−    , x_3 =e^((i7π)/4)  =e^(i(((8π−π)/4))) =x_0 ^−    ⇒  ∫_1 ^(+∞)  F(x)dx =(i/4){ ∫_1 ^(+∞)  (dx/(x−x_0 ))−∫_1 ^(+∞)  (dx/(x−x_1 )) +∫_1 ^(+∞)  (dx/(x−x_1 ^− ))  −∫_1 ^(+∞)  (dx/(x−x_0 ^− ))} =(i/4)[ln(((x−x_o )/(x−x_1 )))]_1 ^(+∞)  +[ln(((x−x_1 ^− )/(x−x_0 ^− )))]_1 ^(+∞)   =(i/4)(−ln(((1−x_0 )/(1−x_1 )))−ln(((1−x_1 ^− )/(1−x_0 ^− ))))   =(i/4){ ln(((1−x_1 )/(1−x_0 )))+ln(((1−x_0 ^− )/(1−x_1 ^− )))}  rest to finish the calculus
letdecomposeF(x)=xx4+1polesofF?x4+1=0x4=e(2k+1)πxk=ei(2k+1)π4andk[[0,3]]F(x)=k.=03akxxkwithak=xk4xk3=14xk2=14ei(2k+1)π2=14(i)2k+1=14(1)ki=i4(1)k1+F(x)dx=i4k=03(1)k1+dxxxkwehavex0=eiπ4,x1=ei3π4,x2=ei5π4=x1,x3=ei7π4=ei(8ππ4)=x01+F(x)dx=i4{1+dxxx01+dxxx1+1+dxxx11+dxxx0}=i4[ln(xxoxx1)]1++[ln(xx1xx0)]1+=i4(ln(1x01x1)ln(1x11x0))=i4{ln(1x11x0)+ln(1x01x1)}resttofinishthecalculus
Commented by Ar Brandon last updated on 04/Apr/20
I should be the one thanking you. Haha!   I learned the method from you. It′s the method you   used when integrating (x^6 /(1+x^(12) ))
Ishouldbetheonethankingyou.Haha!Ilearnedthemethodfromyou.Itsthemethodyouusedwhenintegratingx61+x12
Commented by Ar Brandon last updated on 04/Apr/20
��
Commented by mind is power last updated on 04/Apr/20
nice   the  goal of this Forum  is to  help and learnd new tricks  personaly i learnd new  ideas in this forum   sorry for my English
nicethegoalofthisForumistohelpandlearndnewtrickspersonalyilearndnewideasinthisforumsorryformyEnglish
Commented by Ar Brandon last updated on 05/Apr/20
And I′m doing same here.
AndImdoingsamehere.
Answered by mind is power last updated on 04/Apr/20
∫_0 ^1 ((xdx)/((x^4 +1)))=∫_1 ^(+∞) ((xdx)/((1+x^4 )))  ∫_1 ^(+∞) ((xdx)/(x^4 +1))=(1/2)∫_0 ^∞ ((xdx)/(x^4 +1))  f(z)=(z/(1+z^4 )),let C_R =[0,R]∪{Re^(iθ) ,θ∈[0,(π/2)]}_(=γ) ∪[iR,0];R>1  ∫_C_R  f(z)dz=2iπRes(f,z=e^(i(π/4)) )=2iπ.(1/(4(e^(i(π/2)) )))=(π/2)  ∫_γ f(z)dz=∫_0 ^(π/2) Rie^(iθ) f(Re^(iθ) )dθ  =iR^2 ∫_0 ^(π/2) (e^(2iθ) /(R^4 e^(4iθ) +1))dθ,∣∫f(z)dz∣≤(π/2).(R^2 /(R^4 −1))→0 as R→∞  ∫_(iR) ^0 f(z)dz=i∫_R ^0 f(it)dz=∫_0 ^R (t/(t^4 +1))dt  ⇒lim_(R→∞) ∫_C_R  f(z)dz=lim_(R→∞) 2∫_0 ^R ((tdt)/(t^4 +1))=(π/2)  ∫_0 ^∞ ((tdt)/(t^4 +1)).=(π/4)  ∫_1 ^∞ ((xdx)/(x^4 +1))=(π/8)    .
01xdx(x4+1)=1+xdx(1+x4)1+xdxx4+1=120xdxx4+1Missing \left or extra \rightCRf(z)dz=2iπRes(f,z=eiπ4)=2iπ.14(eiπ2)=π2γf(z)dz=0π2Rieiθf(Reiθ)dθ=iR20π2e2iθR4e4iθ+1dθ,f(z)dz∣⩽π2.R2R410asRiR0f(z)dz=iR0f(it)dz=0Rtt4+1dtlimRCRf(z)dz=lim2R0Rtdtt4+1=π20tdtt4+1.=π41xdxx4+1=π8.
Commented by mathmax by abdo last updated on 04/Apr/20
thanks sir
thankssir
Commented by mind is power last updated on 04/Apr/20
withe pleasur sir
withepleasursir

Leave a Reply

Your email address will not be published. Required fields are marked *