Menu Close

calculate-by-residus-theorem-I-cos-pix-1-x-x-2-dx-




Question Number 33362 by prof Abdo imad last updated on 15/Apr/18
calculate by residus theorem  I = ∫_(−∞) ^(+∞)    ((cos(πx))/((1+x +x^2 )))dx .
$${calculate}\:{by}\:{residus}\:{theorem} \\ $$$${I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\pi{x}\right)}{\left(\mathrm{1}+{x}\:+{x}^{\mathrm{2}} \right)}{dx}\:. \\ $$
Commented by prof Abdo imad last updated on 15/Apr/18
I = Re( ∫_(−∞) ^(+∞)     (e^(iπx) /(1+x+x^2 ))) let introduce the  complexfunction ϕ(z)= (e^(iπz) /(1+z +z^2 )) .the poles of  ϕ are j and j^−    ( j =e^(i((2π)/3)) )  ∫_(−∞) ^(+∞)    (e^(iπz) /(1+z+z^2 ))dz =2iπ Res(ϕ,j)  ϕ(z) = (e^(iπz) /((z−j)(z−j^− ))) ⇒Res(ϕ,j) = (e^(iπj) /(j−j^− ))  = (e^(iπ(−(1/2)+i((√3)/2))) /(2i((√3)/2))) = ((e^(−π((√3)/2))   e^(−i(π/2)) )/(i(√3))) = −i (e^(−π((√3)/2)) /(i(√3)))  = −(e^(−π((√3)/2)) /( (√3))) ⇒ ∫_(−∞) ^(+∞)  ϕ(z)dz = −2iπ (e^(−π((√3)/2)) /( (√3)))  I =Re( ∫_(−∞) ^(+∞)  ϕ(z)dz) =0 also we have  ∫_(−∞) ^(+∞)   ((sin(πx))/(1+x+x^2 ))dx = ((−2π)/( (√3))) e^(−π((√3)/2))  .
$${I}\:=\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{e}^{{i}\pi{x}} }{\mathrm{1}+{x}+{x}^{\mathrm{2}} }\right)\:{let}\:{introduce}\:{the} \\ $$$${complexfunction}\:\varphi\left({z}\right)=\:\frac{{e}^{{i}\pi{z}} }{\mathrm{1}+{z}\:+{z}^{\mathrm{2}} }\:.{the}\:{poles}\:{of} \\ $$$$\varphi\:{are}\:{j}\:{and}\:\overset{−} {{j}}\:\:\:\left(\:{j}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \right) \\ $$$$\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{i}\pi{z}} }{\mathrm{1}+{z}+{z}^{\mathrm{2}} }{dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{j}\right) \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\pi{z}} }{\left({z}−{j}\right)\left({z}−\overset{−} {{j}}\right)}\:\Rightarrow{Res}\left(\varphi,{j}\right)\:=\:\frac{{e}^{{i}\pi{j}} }{{j}−\overset{−} {{j}}} \\ $$$$=\:\frac{{e}^{{i}\pi\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)} }{\mathrm{2}{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:=\:\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:\:{e}^{−{i}\frac{\pi}{\mathrm{2}}} }{{i}\sqrt{\mathrm{3}}}\:=\:−{i}\:\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{{i}\sqrt{\mathrm{3}}} \\ $$$$=\:−\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{\:\sqrt{\mathrm{3}}}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\:−\mathrm{2}{i}\pi\:\frac{{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} }{\:\sqrt{\mathrm{3}}} \\ $$$${I}\:={Re}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\right)\:=\mathrm{0}\:{also}\:{we}\:{have} \\ $$$$\int_{−\infty} ^{+\infty} \:\:\frac{{sin}\left(\pi{x}\right)}{\mathrm{1}+{x}+{x}^{\mathrm{2}} }{dx}\:=\:\frac{−\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:{e}^{−\pi\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}} \:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *