Menu Close

calculate-by-two-methods-0-1-0-pi-2-dx-dt-1-x-2-tan-2-t-then-find-the-value-of-0-pi-2-t-cotant-dt-




Question Number 31083 by abdo imad last updated on 02/Mar/18
calculate by two methods ∫_0 ^1   ∫_0 ^(π/2)    ((dx dt)/(1+x^2 tan^2 t))  then find the value of ∫_0 ^(π/2)  t cotant dt .
calculatebytwomethods010π2dxdt1+x2tan2tthenfindthevalueof0π2tcotantdt.
Commented by abdo imad last updated on 11/Mar/18
let put I= ∫_0 ^(π/2)  (∫_0 ^1  (dx/(1+x^2 tan^2 t)))dt  ch. xtant=u give  ∫_0 ^1      (dx/(1+x^2 tan^2 t))= ∫_0 ^1     (1/(1+u^2 )) (du/(tant))  =(1/(tant)) [arctanu]_0 ^(tant) = (t/(tant)) ⇒ I= ∫_0 ^(π/2) t cotant dt  from another side by fubini theorem we have  I= ∫_0 ^1   (∫_0 ^(π/2)    (dt/(1+x^2 tan^2 t)))dx   the ch.tant =u give  ∫_0 ^(π/2)    (dt/(1+x^2 tan^2 t)) = ∫_0 ^∞       (du/((1+u^2 )(1+x^2 u^2 ))) let  decompose F(u)= (1/((1+u^2 )(1+x^2 u^2 ))) =((au+b)/(1+u^2 )) +((cu +d)/(1+x^2 u^2 ))  F(−u)=F(u) ⇒((−au +b)/(1+u^2 )) +((−cu+d)/(1+x^2 u^2 ))=F(u) ⇒a=c=0⇒  F(u) =(b/(1+u^2 )) +(d/(1+x^2 u^2 )) lim_(u→∞) u^2 F(u)=0=b +(d/x^2 ) ⇒  d=−bx^2    ⇒F(u)= (b/(1+u^2 )) −((bx^2 )/(1+x^2 u^2 )) we look that b=(1/(1−x^2 ))  and F(u)=(1/(1−x^2 ))( (1/(1+u^2 )) −(x^2 /(1+x^2 u^2 )))  ∫_0 ^∞  F(u)du= (1/(1−x^2 ))∫_0 ^∞   (du/(1+u^2 ))  −(x^2 /(1−x^2 )) ∫_0 ^(+∞)  (du/(1+x^2  u^2 ))  =(π/(2(1−x^2 ))) −(x^2 /(1−x^2 )) ∫_0 ^∞    (1/(1+α^2 ))(dα/x)                 (ch.xu=α)  = (π/(2(1−x^2 ))) −((πx)/(2(1−x^2 )))=((π(1−x))/(2(1−x)(1+x))) = (π/(2(1+x)))  I =∫_0 ^1   ((πdx)/(2(1+x))) =(π/2) ∫_0 ^1  (dx/(1+x)) =(π/2) ln(2) ⇒  ∫_0 ^(π/2)  t cotant dt =(π/2)ln(2).
letputI=0π2(01dx1+x2tan2t)dtch.xtant=ugive01dx1+x2tan2t=0111+u2dutant=1tant[arctanu]0tant=ttantI=0π2tcotantdtfromanothersidebyfubinitheoremwehaveI=01(0π2dt1+x2tan2t)dxthech.tant=ugive0π2dt1+x2tan2t=0du(1+u2)(1+x2u2)letdecomposeF(u)=1(1+u2)(1+x2u2)=au+b1+u2+cu+d1+x2u2F(u)=F(u)au+b1+u2+cu+d1+x2u2=F(u)a=c=0F(u)=b1+u2+d1+x2u2limuu2F(u)=0=b+dx2d=bx2F(u)=b1+u2bx21+x2u2welookthatb=11x2andF(u)=11x2(11+u2x21+x2u2)0F(u)du=11x20du1+u2x21x20+du1+x2u2=π2(1x2)x21x2011+α2dαx(ch.xu=α)=π2(1x2)πx2(1x2)=π(1x)2(1x)(1+x)=π2(1+x)I=01πdx2(1+x)=π201dx1+x=π2ln(2)0π2tcotantdt=π2ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *