calculate-by-two-methods-0-1-0-pi-2-dx-dt-1-x-2-tan-2-t-then-find-the-value-of-0-pi-2-t-cotant-dt- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 31083 by abdo imad last updated on 02/Mar/18 calculatebytwomethods∫01∫0π2dxdt1+x2tan2tthenfindthevalueof∫0π2tcotantdt. Commented by abdo imad last updated on 11/Mar/18 letputI=∫0π2(∫01dx1+x2tan2t)dtch.xtant=ugive∫01dx1+x2tan2t=∫0111+u2dutant=1tant[arctanu]0tant=ttant⇒I=∫0π2tcotantdtfromanothersidebyfubinitheoremwehaveI=∫01(∫0π2dt1+x2tan2t)dxthech.tant=ugive∫0π2dt1+x2tan2t=∫0∞du(1+u2)(1+x2u2)letdecomposeF(u)=1(1+u2)(1+x2u2)=au+b1+u2+cu+d1+x2u2F(−u)=F(u)⇒−au+b1+u2+−cu+d1+x2u2=F(u)⇒a=c=0⇒F(u)=b1+u2+d1+x2u2limu→∞u2F(u)=0=b+dx2⇒d=−bx2⇒F(u)=b1+u2−bx21+x2u2welookthatb=11−x2andF(u)=11−x2(11+u2−x21+x2u2)∫0∞F(u)du=11−x2∫0∞du1+u2−x21−x2∫0+∞du1+x2u2=π2(1−x2)−x21−x2∫0∞11+α2dαx(ch.xu=α)=π2(1−x2)−πx2(1−x2)=π(1−x)2(1−x)(1+x)=π2(1+x)I=∫01πdx2(1+x)=π2∫01dx1+x=π2ln(2)⇒∫0π2tcotantdt=π2ln(2). Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-by-two-methods-0-0-dxdy-1-y-1-x-2-y-then-find-the-value-of-0-lnx-1-x-2-dx-Next Next post: calculate-x-2-y-2-2x-0-xdxdy- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.