Menu Close

calculate-bycomplex-method-1-dx-1-x-2-




Question Number 86374 by mathmax by abdo last updated on 28/Mar/20
calculate bycomplex method  ∫_1 ^(+∞)  (dx/(1+x^2 ))
calculatebycomplexmethod1+dx1+x2
Commented by mathmax by abdo last updated on 28/Mar/20
∫_1 ^(+∞)  (dx/(x^2  +1)) =∫_1 ^(+∞)  (dx/((x−i)(x+i))) =(1/(2i))∫_1 ^(+∞) ((1/(x−i))−(1/(x+i)))dx  =(1/(2i))[ln(((x−i)/(x+i)))]_1 ^(+∞)  =(1/(2i))(−ln(((1−i)/(1+i)))) =(1/(2i))ln(((1+i)/(1−i))) we have  ((1+i)/(1−i)) =(((√2)e^((iπ)/4) )/( (√2)e^(−((iπ)/4)) )) =e^((iπ)/2)  = ⇒ln(((1+i)/(1−i))) =((iπ)/2) ⇒  ∫_1 ^(+∞)  (dx/(x^2  +1)) =(1/(2i))×((iπ)/2) =(π/4)
1+dxx2+1=1+dx(xi)(x+i)=12i1+(1xi1x+i)dx=12i[ln(xix+i)]1+=12i(ln(1i1+i))=12iln(1+i1i)wehave1+i1i=2eiπ42eiπ4=eiπ2=ln(1+i1i)=iπ21+dxx2+1=12i×iπ2=π4

Leave a Reply

Your email address will not be published. Required fields are marked *