Menu Close

calculate-C-9-z-2-2-z-z-1-3-z-2-dz-with-C-is-the-circle-C-z-C-z-3-




Question Number 37299 by math khazana by abdo last updated on 11/Jun/18
calculate  ∫_C    ((9(z^2  +2))/(z(z+1)^3 (z−2)))dz  with  C is the  circle C ={z∈C/ ∣z∣ =3}
calculateC9(z2+2)z(z+1)3(z2)dzwithCisthecircleC={zC/z=3}
Commented by math khazana by abdo last updated on 17/Jun/18
let consider the complex function  ϕ(z)= ((9(z^2  +2))/(z(z+1)^3 (z−2))) the poles of ϕ are  0, −1,2  (all are at interior of circle C)  ∫_C ϕ−z)dz =2iπ { Res(ϕ,0)+Res(ϕ,−1)+Res(ϕ,2)  Res(ϕ,0)=lim_(z→0) zϕ(z)= ((18)/(−2)) =−9  Res(ϕ,2) =lim_(z→2) (z−2)ϕ(z)  = ((36)/(2.27)) =((18)/(27))= ((2.9)/(3.9)) =(2/3)  Res(ϕ,−1) =lim_(z→−1)  (1/((3−1)!)){(z+1)^3 ϕ(z)}^((2))   =lim_(z→−1)  (9/2){ ((z^2  +2)/(z^2  −2z))}^((2))   =lim_(z→−1) (9/2){((2z(z^2 −2z) −(2z−2)(z^2 +2))/((z^2  −2z)^2 ))}^((1))   =lim_(z→−1) (9/2){ ((2z^3  −4z^2  −2z^3  −4z +2z^2  +4)/((z^2  −2z)^2 ))}^((1))   =lim_(z→−1)  (9/2){ ((−2z^2  −4z +4)/((z^2  −2z)^2 ))}^((1))   =lim_(z→−1)  (9/2){ (((−4z−4)(z^2  −2z)^2  −2(2z−2)(z^2  −2z)(−2z^2 −4z +4))/((z^2  −2z)^4 ))}  =lim_(z→−1)  (9/2){ (((−4z−4)(z^2  −2z) −4(z−1)(−2z^2 −4z +4))/((z^2 −2z)^3 ))}  =(9/2)  ((8(6))/(27)) = ((8.6)/(2.3)) = 4.2=8  ∫_C ϕ(z)dz=2iπ{−9  +(2/3) +8}  =2iπ(−1+(2/3))=2iπ(−(1/3))=−((2iπ)/3)
letconsiderthecomplexfunctionφ(z)=9(z2+2)z(z+1)3(z2)thepolesofφare0,1,2(allareatinteriorofcircleC)Cφz)dz=2iπ{Res(φ,0)+Res(φ,1)+Res(φ,2)Res(φ,0)=limz0zφ(z)=182=9Res(φ,2)=limz2(z2)φ(z)=362.27=1827=2.93.9=23Res(φ,1)=limz11(31)!{(z+1)3φ(z)}(2)=limz192{z2+2z22z}(2)=limz192{2z(z22z)(2z2)(z2+2)(z22z)2}(1)=limz192{2z34z22z34z+2z2+4(z22z)2}(1)=limz192{2z24z+4(z22z)2}(1)=limz192{(4z4)(z22z)22(2z2)(z22z)(2z24z+4)(z22z)4}=limz192{(4z4)(z22z)4(z1)(2z24z+4)(z22z)3}=928(6)27=8.62.3=4.2=8Cφ(z)dz=2iπ{9+23+8}=2iπ(1+23)=2iπ(13)=2iπ3

Leave a Reply

Your email address will not be published. Required fields are marked *