calculate-C-9-z-2-2-z-z-1-3-z-2-dz-with-C-is-the-circle-C-z-C-z-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 37299 by math khazana by abdo last updated on 11/Jun/18 calculate∫C9(z2+2)z(z+1)3(z−2)dzwithCisthecircleC={z∈C/∣z∣=3} Commented by math khazana by abdo last updated on 17/Jun/18 letconsiderthecomplexfunctionφ(z)=9(z2+2)z(z+1)3(z−2)thepolesofφare0,−1,2(allareatinteriorofcircleC)∫Cφ−z)dz=2iπ{Res(φ,0)+Res(φ,−1)+Res(φ,2)Res(φ,0)=limz→0zφ(z)=18−2=−9Res(φ,2)=limz→2(z−2)φ(z)=362.27=1827=2.93.9=23Res(φ,−1)=limz→−11(3−1)!{(z+1)3φ(z)}(2)=limz→−192{z2+2z2−2z}(2)=limz→−192{2z(z2−2z)−(2z−2)(z2+2)(z2−2z)2}(1)=limz→−192{2z3−4z2−2z3−4z+2z2+4(z2−2z)2}(1)=limz→−192{−2z2−4z+4(z2−2z)2}(1)=limz→−192{(−4z−4)(z2−2z)2−2(2z−2)(z2−2z)(−2z2−4z+4)(z2−2z)4}=limz→−192{(−4z−4)(z2−2z)−4(z−1)(−2z2−4z+4)(z2−2z)3}=928(6)27=8.62.3=4.2=8∫Cφ(z)dz=2iπ{−9+23+8}=2iπ(−1+23)=2iπ(−13)=−2iπ3 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-z-1-z-z-1-z-2-dz-with-is-the-circle-z-C-z-3-2-Next Next post: let-f-z-1-z-2-e-2z-z-3-calculate-Res-f-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.