Menu Close

calculate-C-dt-1-tan-2-t-using-x-tan-t-




Question Number 169251 by mathocean1 last updated on 26/Apr/22
calculate C=∫(dt/(1+tan^2 (t))) using x=tan(t)
calculateC=dt1+tan2(t)usingx=tan(t)
Answered by thfchristopher last updated on 27/Apr/22
Let x=tan t  dx=sec^2 tdt  dx=(1+x^2 )dt  (dx/(1+x^2 ))=dt  ∴∫(dt/(1+tan^2 t))  =∫(dx/((x^2 +1)^2 ))  =(x/(2(x^2 +1)))+(1/2)∫(dx/(x^2 +1))   (reduction formula)  =((tan t)/(2sec^2 t))+(1/2)∫dt  =(1/2)(sin tcos t+t)+c
Letx=tantdx=sec2tdtdx=(1+x2)dtdx1+x2=dtdt1+tan2t=dx(x2+1)2=x2(x2+1)+12dxx2+1(reductionformula)=tant2sec2t+12dt=12(sintcost+t)+c

Leave a Reply

Your email address will not be published. Required fields are marked *