Menu Close

calculate-cos-2-47-o-cos-2-73-o-cos-47-o-cos-73-o-1-2-




Question Number 101522 by bramlex last updated on 03/Jul/20
calculate : cos^2 47^o +cos^2 73^o +cos 47^o .cos 73^o +(1/2)
$$\mathrm{calculate}\::\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{47}^{\mathrm{o}} +\mathrm{cos}\:^{\mathrm{2}} \mathrm{73}^{\mathrm{o}} +\mathrm{cos}\:\mathrm{47}^{\mathrm{o}} .\mathrm{cos}\:\mathrm{73}^{\mathrm{o}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Commented by bemath last updated on 03/Jul/20
= (cos 47^o +cos 73^o )^2 −cos 73^o .cos 43^o +(1/2)  = (2cos 60^o .cos 13^o )^2 −(1/2)(cos 120^o +cos 26^o )+(1/2)  = cos^2 13^o +(1/4)−(1/2)cos 26^o +(1/2)  =(3/4)+cos^2 13^o −(1/2)(2cos^2 13^o −1)  = (3/4)+(1/2) = (5/4)
$$=\:\left(\mathrm{cos}\:\mathrm{47}^{\mathrm{o}} +\mathrm{cos}\:\mathrm{73}^{\mathrm{o}} \right)^{\mathrm{2}} −\mathrm{cos}\:\mathrm{73}^{\mathrm{o}} .\mathrm{cos}\:\mathrm{43}^{\mathrm{o}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\:\left(\mathrm{2cos}\:\mathrm{60}^{\mathrm{o}} .\mathrm{cos}\:\mathrm{13}^{\mathrm{o}} \right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{cos}\:\mathrm{120}^{\mathrm{o}} +\mathrm{cos}\:\mathrm{26}^{\mathrm{o}} \right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\:\mathrm{cos}\:^{\mathrm{2}} \mathrm{13}^{\mathrm{o}} +\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\mathrm{26}^{\mathrm{o}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}+\mathrm{cos}\:^{\mathrm{2}} \mathrm{13}^{\mathrm{o}} −\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2cos}\:^{\mathrm{2}} \mathrm{13}^{\mathrm{o}} −\mathrm{1}\right) \\ $$$$=\:\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}}\:=\:\frac{\mathrm{5}}{\mathrm{4}} \\ $$
Answered by Dwaipayan Shikari last updated on 03/Jul/20
(cos47°+cos73°)^2 −(1/2)(cos120°+cos26°)+(1/2)  =cos^2 13°−(1/2)(2cos^2 13°−1)+(1/4)+(1/2)  =1+(1/4)=1.25
$$\left({cos}\mathrm{47}°+{cos}\mathrm{73}°\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left({cos}\mathrm{120}°+{cos}\mathrm{26}°\right)+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$={cos}^{\mathrm{2}} \mathrm{13}°−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{cos}^{\mathrm{2}} \mathrm{13}°−\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{1}.\mathrm{25} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *