Menu Close

calculate-cos-3x-x-2-x-1-2-dx-




Question Number 162016 by mathmax by abdo last updated on 25/Dec/21
calculate ∫_(−∞) ^(+∞)  ((cos(3x))/((x^2 +x+1)^2 ))dx
calculate+cos(3x)(x2+x+1)2dx
Commented by MJS_new last updated on 25/Dec/21
I can solve the indefinite integral but it′s a  long hard way...
Icansolvetheindefiniteintegralbutitsalonghardway
Commented by mathmax by abdo last updated on 25/Dec/21
use residus theorem sir
useresidustheoremsir
Answered by Ar Brandon last updated on 24/Mar/22
Υ=∫_(−∞) ^(+∞) ((cos3x)/((x^2 +x+1)^2 ))dx=Re∫_(−∞) ^(+∞) (e^(3ix) /((x^2 +x+1)^2 ))dx  Let f(x)=(e^(3ix) /((x^2 +x+1)^2 )). Poles of f(x): e^((2/3)iπ)  and e^(−(2/3)iπ) , order-2    Υ=Re∫_(−∞) ^(+∞) f(x)dx=Re(2iπRes(f, e^((2/3)iπ) ))  Res (f, e^((2/3)iπ) )=lim_(x→e^((2/3)iπ) ) {(x−e^((2/3)iπ) )^2 f(x)}^((1)) =lim_(x→e^((2/3)iπ) ) {(e^(3ix) /((x−e^(−(2/3)iπ) )^2 ))}^((1))   =lim_(x→e^((2/3)iπ) ) {((3ie^(3ix) (x−e^(−(2/3)iπ) )^2 −2e^(3ix) (x−e^(−(2/3)iπ) ))/((x−e^(−(2/3)iπ) )^4 ))}  =−(1/9)(9ie^(3i(−(1/2)+i((√3)/2))) +2(√3)ie^(3i(−(1/2)+i((√3)/2))) )=−(1/9)(9+2(√3))e^((−((3(√3))/2)−i((3−π)/2)))   Υ=−((2π)/9)(9+2(√3))e^(−((3(√3))/2)) sin(((3−π)/2))=((2π)/9)(9+2(√3))e^(−((3(√3))/2)) cos((3/2))
Υ=+cos3x(x2+x+1)2dx=Re+e3ix(x2+x+1)2dxLetf(x)=e3ix(x2+x+1)2.Polesoff(x):e23iπande23iπ,order2Υ=Re+f(x)dx=Re(2iπRes(f,e23iπ))Res(f,e23iπ)=limxe23iπ{(xe23iπ)2f(x)}(1)=limxe23iπ{e3ix(xe23iπ)2}(1)=limxe23iπ{3ie3ix(xe23iπ)22e3ix(xe23iπ)(xe23iπ)4}=19(9ie3i(12+i32)+23ie3i(12+i32))=19(9+23)e(332i3π2)Υ=2π9(9+23)e332sin(3π2)=2π9(9+23)e332cos(32)
Commented by Mathspace last updated on 26/Dec/21
error of calculus..
errorofcalculus..
Commented by Ar Brandon last updated on 26/Dec/21
Thank you for checking, Sir. Rectified!
Thankyouforchecking,Sir.Rectified!
Answered by Mathspace last updated on 26/Dec/21
Ψ=∫_(−∞) ^(+∞ ) ((cos(3x))/((x^2 +x+1)^2 ))dx ⇒  Ψ=Re(∫_(−∞) ^(+∞)  (e^(3ix) /((x^2 +x+1)^2 ))dx)  let ϕ(z)=(e^(3iz) /((z^2 +z+1)^2 )) poles of ϕ?  z^2  +z+1=0→Δ=1−4=−3 ⇒  z_1 =((−1+i(√3))/2)=e^((i2π)/3)   z_2 =((−1−i(√3))/2)=e^(−((i2π)/3))   the poles are z_i   (with ordre=2)  ϕ(z)=(e^(3iz) /((z−z_1 )^2 (z−z_2 )^2 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπRes(ϕ,z_1 )  Res(ϕ,z_1 )=lim_(z→z_1 )  (1/((2−1)!)){(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )   {(e^(3iz) /((z−z_2 )^2 ))}^((1))   =lim_(z→z1)    ((3ie^(3iz) (z−z_2 )^2 −2(z−z_2 )e^(3iz) )/((z−z_2 )^4 ))  =lim_(z→z_1 )    (({3i(z−z_2 )−2}e^(3iz) )/((z−z_2 )^3 ))  =(({3i(z_1 −z_2 )−2}e^(3iz_1 ) )/((z_1 −z_2 )^3 ))  =(({3i(i(√3))−2}e^(3i(((−1+i(√3))/2))) )/((i(√3))^3 ))  =(({−3(√3)−2}e^(−((3(√3))/2)) {cos((3/2))−isin((3/2))})/(−3i(√3)))  =(({3(√3)+2}e^(−((3(√3))/2)) {cos((3/2))−isin((3/2))})/(3i(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz=((2iπ)/(3i(√3))){3(√3)+2}(...)  ⇒Ψ=((2π)/(3(√3)))(3(√3)+2)e^(−((3(√3))/2)) cos((3/2))
Ψ=+cos(3x)(x2+x+1)2dxΨ=Re(+e3ix(x2+x+1)2dx)letφ(z)=e3iz(z2+z+1)2polesofφ?z2+z+1=0Δ=14=3z1=1+i32=ei2π3z2=1i32=ei2π3thepolesarezi(withordre=2)φ(z)=e3iz(zz1)2(zz2)2+φ(z)dz=2iπRes(φ,z1)Res(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{e3iz(zz2)2}(1)=limzz13ie3iz(zz2)22(zz2)e3iz(zz2)4=limzz1{3i(zz2)2}e3iz(zz2)3={3i(z1z2)2}e3iz1(z1z2)3={3i(i3)2}e3i(1+i32)(i3)3={332}e332{cos(32)isin(32)}3i3={33+2}e332{cos(32)isin(32)}3i3+φ(z)dz=2iπ3i3{33+2}()Ψ=2π33(33+2)e332cos(32)

Leave a Reply

Your email address will not be published. Required fields are marked *