Question Number 92078 by mathmax by abdo last updated on 04/May/20
$${calculate}\:\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({arctan}\left(\mathrm{2}{x}+\mathrm{1}\right)\right)}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$
Commented by abdomathmax last updated on 09/May/20
$${I}\:=\int_{−\infty} ^{+\infty} \:\frac{{cos}\left({arctan}\left(\mathrm{2}{x}+\mathrm{1}\right)\right){dx}}{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}\: \\ $$$${I}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\frac{{e}^{{iarctan}\left(\mathrm{2}{x}+\mathrm{1}\right)} }{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}{dx}\right)\:{let}\:\varphi\left({z}\right)\:=\frac{{e}^{{iarctan}\left(\mathrm{2}{z}+\mathrm{1}\right)} }{{z}^{\mathrm{2}} \:+{z}+\mathrm{1}} \\ $$$${poles}\:{of}\:\varphi?\:\:\:{z}^{\mathrm{2}} \:+{z}+\mathrm{1}\:=\mathrm{0}\:\rightarrow\Delta=−\mathrm{3}\:\Rightarrow \\ $$$${z}_{\mathrm{1}} =\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:\:{and}\:{z}_{\mathrm{2}} =\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:={e}^{−\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \\ $$$${residus}\:{theorem}\:{give}\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \right) \\ $$$${Res}\left(\varphi,{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \right)\:=\frac{{e}^{{iarctan}\left(\mathrm{2}\:{z}_{\mathrm{1}} +\mathrm{1}\right)} }{\left({z}_{\mathrm{1}} −{z}_{\mathrm{2}} \right)}\:=\frac{{e}^{{iarctan}\left(\mathrm{2}{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} +\mathrm{1}\right)} }{\mathrm{2}{i}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\:{e}^{{i}\:{arctan}\left(\mathrm{2}{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:+\mathrm{1}\right)} \\ $$$${we}\:{know}\:\:{arctan}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{iz}}{\mathrm{1}−{iz}}\right) \\ $$$$\mathrm{2}{e}^{\frac{{i}\mathrm{2}\pi}{\mathrm{3}}} \:+\mathrm{1}\:=\mathrm{2}\left(−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+\mathrm{1}\:={i}\sqrt{\mathrm{3}}\:\Rightarrow \\ $$$${arctan}\left(…\right)\:={arctan}\left({i}\sqrt{\mathrm{3}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}+{i}\left({i}\sqrt{\mathrm{3}}\right)}{\mathrm{1}−{i}\left({i}\sqrt{\mathrm{3}}\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\mathrm{1}−\sqrt{\mathrm{3}}}{\mathrm{1}+\sqrt{\mathrm{3}}}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(−\mathrm{1}\right)\:+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}}\right) \\ $$$$=\frac{{i}\pi}{\mathrm{2}{i}}\:+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}}\right)\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\left(\frac{\pi}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}{i}}{ln}\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}}\right)\right) \\ $$$$=\frac{\pi^{\mathrm{2}} }{\:\sqrt{\mathrm{3}}}\:+−\frac{{i}\pi}{\:\sqrt{\mathrm{3}}}{ln}\left(\frac{\sqrt{\mathrm{3}}−\mathrm{1}}{\:\sqrt{\mathrm{3}}+\mathrm{1}}\right)\: \\ $$$${I}\:={Re}\left(\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:\right)\:=\frac{\pi^{\mathrm{2}} }{\:\sqrt{\mathrm{3}}} \\ $$
Commented by Ar Brandon last updated on 09/May/20
nice