Menu Close

calculate-cos-cosx-sinx-x-2-4-dx-




Question Number 92993 by mathmax by abdo last updated on 10/May/20
calculate  ∫_(−∞) ^(+∞)  ((cos(cosx−sinx))/(x^2  +4))dx
calculate+cos(cosxsinx)x2+4dx
Commented by mathmax by abdo last updated on 10/May/20
I =∫_(−∞) ^(+∞)  ((cos(cosx−sinx))/(x^2 +4))dx ⇒ I =∫_(−∞) ^(+∞)  ((cos((√2)cos(x+(π/4))))/(x^2  +4))dx  =_(x+(π/4)=t)    ∫_(−∞) ^(+∞)  ((cos((√2)t))/((t−(π/4))^2  +4))dt =Re(∫_(−∞) ^(+∞)  (e^(i(√2)t) /((t−(π/4))^2 +4)))  let ϕ(z) =(e^(iz(√2)) /((z−(π/4))^2 +4))   poles of ϕ?  ϕ(z) =(e^(iz(√2)) /((z−(π/4))^2 −(2i)^2 )) =(e^(iz(√2)) /((z−(π/4)−2i)(z−(π/4)+2i)))  so the poles of ϕ are (π/4)+2i and (π/4)−2i  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,(π/4)+2i) =2iπ(e^(i(√2)((π/4)+2i)) /(4i))  =(π/2) e^((iπ(√2))/4)  e^(−2(√2)) =(π/2)e^(−2(√2))   {cos(((π(√2))/4))+isin(((π(√2))/4))} ⇒  I =(π/2)e^(−2(√2))  cos(((π(√2))/4))
I=+cos(cosxsinx)x2+4dxI=+cos(2cos(x+π4))x2+4dx=x+π4=t+cos(2t)(tπ4)2+4dt=Re(+ei2t(tπ4)2+4)letφ(z)=eiz2(zπ4)2+4polesofφ?φ(z)=eiz2(zπ4)2(2i)2=eiz2(zπ42i)(zπ4+2i)sothepolesofφareπ4+2iandπ42i+φ(z)dz=2iπRes(φ,π4+2i)=2iπei2(π4+2i)4i=π2eiπ24e22=π2e22{cos(π24)+isin(π24)}I=π2e22cos(π24)

Leave a Reply

Your email address will not be published. Required fields are marked *