calculate-cos-cosx-sinx-x-2-4-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 92993 by mathmax by abdo last updated on 10/May/20 calculate∫−∞+∞cos(cosx−sinx)x2+4dx Commented by mathmax by abdo last updated on 10/May/20 I=∫−∞+∞cos(cosx−sinx)x2+4dx⇒I=∫−∞+∞cos(2cos(x+π4))x2+4dx=x+π4=t∫−∞+∞cos(2t)(t−π4)2+4dt=Re(∫−∞+∞ei2t(t−π4)2+4)letφ(z)=eiz2(z−π4)2+4polesofφ?φ(z)=eiz2(z−π4)2−(2i)2=eiz2(z−π4−2i)(z−π4+2i)sothepolesofφareπ4+2iandπ4−2i∫−∞+∞φ(z)dz=2iπRes(φ,π4+2i)=2iπei2(π4+2i)4i=π2eiπ24e−22=π2e−22{cos(π24)+isin(π24)}⇒I=π2e−22cos(π24) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: y-ln-x-2-2-y-4-ln-x-28-Next Next post: n-1-1-n-2-2n-1-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.