Menu Close

calculate-cos-tx-1-x-4-dx-with-t-0-2-calculate-0-dx-1-x-4-




Question Number 34229 by abdo imad last updated on 03/May/18
calculate ∫_(−∞) ^∞   ((cos(tx))/(1+x^4 )) dx  with t≥0  2) calculate ∫_0 ^∞     (dx/(1+x^4 )) .
calculatecos(tx)1+x4dxwitht02)calculate0dx1+x4.
Commented by math khazana by abdo last updated on 04/May/18
let put f(t)= ∫_(−∞) ^(+∞)    ((cos(tx))/(1+x^4 ))dx  f(t)= Re( ∫_(−∞) ^(+∞)    (e^(itx) /(1+x^4 ))dx) let consider the complex  function ϕ(z) = (e^(itz) /(1+z^4 ))   we have  ϕ(z)= (e^(itz) /((z^2 −i)(z^2 +i))) = (e^(itz) /((z −(√i))(z+(√i))( z−(√(−i)))(z+(√(−i)))))  =  (e^(itz) /((z−e^(i(π/4)) )(z +e^(i(π/4)) )( z −e^(−((iπ)/4)) )(z +e^(−i(π/4)) )))  the poles of ϕ are  e^(i(π/4)) ,−e^(i(π/4)) ,e^(−i(π/4))  , −e^(−i(π/4))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ( Res(ϕ,e^(i(π/4)) ) +Res(ϕ,−e^(−i(π/4)) )  let p(z) all poles of ϕ are roots of p and  p^′ (z) = 4 z^3  ⇒p^′ (z_k )= 4z_k ^3 = ((4z_k ^4 )/z_k ) = ((−4)/z_k )  Res(ϕ,e^(i(π/4)) )  = (e^(it e^(i(π/4)) ) /(−4)) e^(i(π/4)) =−(1/4) e^(i(π/4))     e^(it e^(i(π/4)) )   =−(1/4) e^(i((π/4) +t( (1/( (√2))) +(i/( (√2)))))) = −(1/4) e^(i((π/4) +(t/( (√2))))−(t/( (√2))))   =−(1/4) e^(−(t/( (√2))))   e^(i((π/4)+(t/( (√2)))))   Res(ϕ,−e^(−i(π/4)) )= (1/4) e^(−i(π/4))   e^(−ite^(−i(π/4)) )   = (1/4) e^(−i( (π/4) +t ((1/( (√2)))  −(i/( (√2))))))   = (1/4) e^(−i((π/4) +(t/( (√2)))) −(t/( (√2))))   = (1/4) e^(−(t/( (√2))))    e^(−i( (π/4) +(t/( (√2)))))   ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−(t/( (√2)))) /4)(  e^(−i((π/4) +(t/( (√2)))))  − e^(i((π/4) +(t/( (√2))))) )  =((iπ)/2) e^(−(t/( (√2)))) ( −2i sin((π/4) +(t/2)))= π e^(−(t/( (√2))))  sin((π/4) +(t/2))  f(t)=Re( ∫_(−∞) ^(+∞)  ϕ(z)dz) ⇒  f(t)= π e^(−(t/( (√2))))  sin((π/4) +(t/2)) .
letputf(t)=+cos(tx)1+x4dxf(t)=Re(+eitx1+x4dx)letconsiderthecomplexfunctionφ(z)=eitz1+z4wehaveφ(z)=eitz(z2i)(z2+i)=eitz(zi)(z+i)(zi)(z+i)=eitz(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)thepolesofφareeiπ4,eiπ4,eiπ4,eiπ4+φ(z)dz=2iπ(Res(φ,eiπ4)+Res(φ,eiπ4)letp(z)allpolesofφarerootsofpandp(z)=4z3p(zk)=4zk3=4zk4zk=4zkRes(φ,eiπ4)=eiteiπ44eiπ4=14eiπ4eiteiπ4=14ei(π4+t(12+i2))=14ei(π4+t2)t2=14et2ei(π4+t2)Res(φ,eiπ4)=14eiπ4eiteiπ4=14ei(π4+t(12i2))=14ei(π4+t2)t2=14et2ei(π4+t2)+φ(z)dz=2iπet24(ei(π4+t2)ei(π4+t2))=iπ2et2(2isin(π4+t2))=πet2sin(π4+t2)f(t)=Re(+φ(z)dz)f(t)=πet2sin(π4+t2).
Commented by math khazana by abdo last updated on 04/May/18
2) let take t=0 ⇒ ∫_(−∞) ^(+∞)    (dx/(1+x^4 )) = f(0)= π sin((π/4))  = (π/( (√2))) = ((π(√2))/2) ⇒ ∫_0 ^(+∞)    (dx/(1+x^4 )) = ((π(√2))/4)  .
2)lettaket=0+dx1+x4=f(0)=πsin(π4)=π2=π220+dx1+x4=π24.
Commented by math khazana by abdo last updated on 04/May/18
error at the final lines  ∫_(−∞) ^(+∞)  ϕ(z)dz = ((iπ)/2) e^(−(t/( (√2)))) (−2i sin((π/4) +(t/( (√2)))))  = π e^(−(t/( (√2))))    sin((π/4) +(t/( (√2)))) ⇒  f(t)  = π e^(−(t/( (√2))))    sin( (π/4) +(t/( (√2)))) .
erroratthefinallines+φ(z)dz=iπ2et2(2isin(π4+t2))=πet2sin(π4+t2)f(t)=πet2sin(π4+t2).
Answered by Joel578 last updated on 03/May/18
∫_0 ^∞  (t^(a − 1) /(1 + t)) dt = (π/(sin (πa))),   0 < a < 1  I = ∫_0 ^∞  (dx/(1 + x^4 ))  (u = x^4   →  du = 4x^3  dx)     = (1/4) ∫_0 ^∞  (x^(−3) /(1 + u)) du     = (1/4) ∫_0 ^∞  (u^(−(3/4)) /(1 + u)) du = (1/4) ∫_0 ^∞  (u^((1/4) − 1) /(1 + u)) du     = (1/4)((π/(sin (π/4))))     = ((π(√2))/4)
0ta11+tdt=πsin(πa),0<a<1I=0dx1+x4(u=x4du=4x3dx)=140x31+udu=140u341+udu=140u1411+udu=14(πsin(π/4))=π24
Answered by tanmay.chaudhury50@gmail.com last updated on 03/May/18
∫_0 ^∞ (dx/(1+x^4 )) =∫_0 ^∞ ((1/x^2 )/(x^2 +(1/x^2 ) ))dx
0dx1+x4=01x2x2+1x2dx
Commented by tanmay.chaudhury50@gmail.com last updated on 03/May/18
(1/2)∫_0 ^∞ (((1+(1/(x^2  )))−(1−(1/x^2 )))/(x^2 +(1/x^2 )))dx  (1/2)∫_0 ^∞ (((1+(1/x^2 )))/((x−(1/x))^2 +2)) dx−(1/2)∫_0 ^∞ (((1−(1/x^2 )))/((x+(1/x))^2 −2))  (1/2)∫_0 ^∞ (dt_1 /(t_1 ^2 +((√(2 )) )^2  ))−(1/2)∫_0 ^∞ (dt_2 /(t_2 ^2 −((√2))^2 ))  =(1/(2(√2) ))∣tan^(−1) ((t_1 /( (√2))))∣_0 ^∞ −(1/2).(1/(2(√2)))∣ln∣(((√2) −t_2 )/( (√2) +t_2 ))∣
120(1+1x2)(11x2)x2+1x2dx120(1+1x2)(x1x)2+2dx120(11x2)(x+1x)22120dt1t12+(2)2120dt2t22(2)2=122tan1(t12)012.122ln2t22+t2
Commented by tanmay.chaudhury50@gmail.com last updated on 03/May/18
=(1/(2(√2))).(Π/2)−(1/(4(√2))).ln∣((((√2)/t_2 )−1)/(((√2)/t_2 )+1))∣→its value is zero
=122.Π2142.ln2t212t2+1∣→itsvalueiszero

Leave a Reply

Your email address will not be published. Required fields are marked *