Question Number 34229 by abdo imad last updated on 03/May/18
$${calculate}\:\int_{−\infty} ^{\infty} \:\:\frac{{cos}\left({tx}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }\:{dx}\:\:{with}\:{t}\geqslant\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{\mathrm{0}} ^{\infty} \:\:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:. \\ $$
Commented by math khazana by abdo last updated on 04/May/18
$${let}\:{put}\:{f}\left({t}\right)=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left({tx}\right)}{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$${f}\left({t}\right)=\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{e}^{{itx}} }{\mathrm{1}+{x}^{\mathrm{4}} }{dx}\right)\:{let}\:{consider}\:{the}\:{complex} \\ $$$${function}\:\varphi\left({z}\right)\:=\:\frac{{e}^{{itz}} }{\mathrm{1}+{z}^{\mathrm{4}} }\:\:\:{we}\:{have} \\ $$$$\varphi\left({z}\right)=\:\frac{{e}^{{itz}} }{\left({z}^{\mathrm{2}} −{i}\right)\left({z}^{\mathrm{2}} +{i}\right)}\:=\:\frac{{e}^{{itz}} }{\left({z}\:−\sqrt{{i}}\right)\left({z}+\sqrt{{i}}\right)\left(\:{z}−\sqrt{−{i}}\right)\left({z}+\sqrt{−{i}}\right)} \\ $$$$=\:\:\frac{{e}^{{itz}} }{\left({z}−{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\left({z}\:+{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\left(\:{z}\:−{e}^{−\frac{{i}\pi}{\mathrm{4}}} \right)\left({z}\:+{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)} \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\:{e}^{{i}\frac{\pi}{\mathrm{4}}} ,−{e}^{{i}\frac{\pi}{\mathrm{4}}} ,{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:,\:−{e}^{−{i}\frac{\pi}{\mathrm{4}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left(\:{Res}\left(\varphi,{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\:+{Res}\left(\varphi,−{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)\right. \\ $$$${let}\:{p}\left({z}\right)\:{all}\:{poles}\:{of}\:\varphi\:{are}\:{roots}\:{of}\:{p}\:{and} \\ $$$${p}^{'} \left({z}\right)\:=\:\mathrm{4}\:{z}^{\mathrm{3}} \:\Rightarrow{p}^{'} \left({z}_{{k}} \right)=\:\mathrm{4}{z}_{{k}} ^{\mathrm{3}} =\:\frac{\mathrm{4}{z}_{{k}} ^{\mathrm{4}} }{{z}_{{k}} }\:=\:\frac{−\mathrm{4}}{{z}_{{k}} } \\ $$$${Res}\left(\varphi,{e}^{{i}\frac{\pi}{\mathrm{4}}} \right)\:\:=\:\frac{{e}^{{it}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} } }{−\mathrm{4}}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} =−\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} \:\:\:\:{e}^{{it}\:{e}^{{i}\frac{\pi}{\mathrm{4}}} } \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{{i}\left(\frac{\pi}{\mathrm{4}}\:+{t}\left(\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\right)} =\:−\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{{i}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:\:{e}^{{i}\left(\frac{\pi}{\mathrm{4}}+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)} \\ $$$${Res}\left(\varphi,−{e}^{−{i}\frac{\pi}{\mathrm{4}}} \right)=\:\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{−{i}\frac{\pi}{\mathrm{4}}} \:\:{e}^{−{ite}^{−{i}\frac{\pi}{\mathrm{4}}} } \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{−{i}\left(\:\frac{\pi}{\mathrm{4}}\:+{t}\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:\:−\frac{{i}}{\:\sqrt{\mathrm{2}}}\right)\right)} \:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)\:−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{4}}\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:\:\:{e}^{−{i}\left(\:\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} }{\mathrm{4}}\left(\:\:{e}^{−{i}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)} \:−\:{e}^{{i}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)} \right) \\ $$$$=\frac{{i}\pi}{\mathrm{2}}\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \left(\:−\mathrm{2}{i}\:{sin}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\mathrm{2}}\right)\right)=\:\pi\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:{sin}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\mathrm{2}}\right) \\ $$$${f}\left({t}\right)={Re}\left(\:\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\right)\:\Rightarrow \\ $$$${f}\left({t}\right)=\:\pi\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:{sin}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\mathrm{2}}\right)\:. \\ $$
Commented by math khazana by abdo last updated on 04/May/18
$$\left.\mathrm{2}\right)\:{let}\:{take}\:{t}=\mathrm{0}\:\Rightarrow\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:=\:{f}\left(\mathrm{0}\right)=\:\pi\:{sin}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$=\:\frac{\pi}{\:\sqrt{\mathrm{2}}}\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{2}}\:\Rightarrow\:\int_{\mathrm{0}} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:\:. \\ $$
Commented by math khazana by abdo last updated on 04/May/18
$${error}\:{at}\:{the}\:{final}\:{lines} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\:\frac{{i}\pi}{\mathrm{2}}\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \left(−\mathrm{2}{i}\:{sin}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)\right) \\ $$$$=\:\pi\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:\:\:{sin}\left(\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)\:\Rightarrow \\ $$$${f}\left({t}\right)\:\:=\:\pi\:{e}^{−\frac{{t}}{\:\sqrt{\mathrm{2}}}} \:\:\:{sin}\left(\:\frac{\pi}{\mathrm{4}}\:+\frac{{t}}{\:\sqrt{\mathrm{2}}}\right)\:. \\ $$
Answered by Joel578 last updated on 03/May/18
$$\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}\:−\:\mathrm{1}} }{\mathrm{1}\:+\:{t}}\:{dt}\:=\:\frac{\pi}{\mathrm{sin}\:\left(\pi{a}\right)},\:\:\:\mathrm{0}\:<\:{a}\:<\:\mathrm{1} \\ $$$${I}\:=\:\int_{\mathrm{0}} ^{\infty} \:\frac{{dx}}{\mathrm{1}\:+\:{x}^{\mathrm{4}} }\:\:\left({u}\:=\:{x}^{\mathrm{4}} \:\:\rightarrow\:\:{du}\:=\:\mathrm{4}{x}^{\mathrm{3}} \:{dx}\right) \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{x}^{−\mathrm{3}} }{\mathrm{1}\:+\:{u}}\:{du} \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{u}^{−\frac{\mathrm{3}}{\mathrm{4}}} }{\mathrm{1}\:+\:{u}}\:{du}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{u}^{\frac{\mathrm{1}}{\mathrm{4}}\:−\:\mathrm{1}} }{\mathrm{1}\:+\:{u}}\:{du} \\ $$$$\:\:\:=\:\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\pi}{\mathrm{sin}\:\left(\pi/\mathrm{4}\right)}\right) \\ $$$$\:\:\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/May/18
$$\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{4}} }\:=\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:}{dx} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/May/18
$$\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} \:}\right)−\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{{x}^{\mathrm{2}} +\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{\left({x}−\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} +\mathrm{2}}\:{dx}−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{\left(\mathrm{1}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)}{\left({x}+\frac{\mathrm{1}}{{x}}\right)^{\mathrm{2}} −\mathrm{2}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}_{\mathrm{1}} }{{t}_{\mathrm{1}} ^{\mathrm{2}} +\left(\sqrt{\mathrm{2}\:}\:\right)^{\mathrm{2}} \:}−\frac{\mathrm{1}}{\mathrm{2}}\underset{\mathrm{0}} {\overset{\infty} {\int}}\frac{{dt}_{\mathrm{2}} }{{t}_{\mathrm{2}} ^{\mathrm{2}} −\left(\sqrt{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}\:}\mid{tan}^{−\mathrm{1}} \left(\frac{{t}_{\mathrm{1}} }{\:\sqrt{\mathrm{2}}}\right)\underset{\mathrm{0}} {\overset{\infty} {\mid}}−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\mid{ln}\mid\frac{\sqrt{\mathrm{2}}\:−{t}_{\mathrm{2}} }{\:\sqrt{\mathrm{2}}\:+{t}_{\mathrm{2}} }\mid \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 03/May/18
$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}.\frac{\Pi}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{2}}}.{ln}\mid\frac{\frac{\sqrt{\mathrm{2}}}{{t}_{\mathrm{2}} }−\mathrm{1}}{\frac{\sqrt{\mathrm{2}}}{{t}_{\mathrm{2}} }+\mathrm{1}}\mid\rightarrow{its}\:{value}\:{is}\:{zero} \\ $$