Menu Close

calculate-D-cos-x-2-y-2-dxdy-with-D-C-o-pi-2-




Question Number 26399 by abdo imad last updated on 25/Dec/17
calculate  ∫∫ _D cos(x^2 +y^2 )dxdy   with  D=C(o.(√(π/2))).
$${calculate}\:\:\int\int\:_{{D}} {cos}\left({x}^{\mathrm{2}} +{y}^{\mathrm{2}} \right){dxdy}\:\:\:{with}\:\:{D}={C}\left({o}.\sqrt{\frac{\pi}{\mathrm{2}}}\right). \\ $$
Answered by kaivan.ahmadi last updated on 25/Dec/17
Answered by ajfour last updated on 25/Dec/17
=∫_0 ^( 2π) ∫_0 ^(  (√(π/2))) (cos r^2 )(rdr)dθ                    if  r^2 =x^2 +y^2   =π∫_0 ^(  (√(π/2))) (cos r^2 )(2rdr)  =π(sin r^2 )∣_0 ^(√(π/2))  = 𝛑 .
$$=\int_{\mathrm{0}} ^{\:\mathrm{2}\pi} \int_{\mathrm{0}} ^{\:\:\sqrt{\frac{\pi}{\mathrm{2}}}} \left(\mathrm{cos}\:{r}^{\mathrm{2}} \right)\left({rdr}\right){d}\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{if}\:\:{r}^{\mathrm{2}} ={x}^{\mathrm{2}} +{y}^{\mathrm{2}} \\ $$$$=\pi\int_{\mathrm{0}} ^{\:\:\sqrt{\pi/\mathrm{2}}} \left(\mathrm{cos}\:{r}^{\mathrm{2}} \right)\left(\mathrm{2}{rdr}\right) \\ $$$$=\pi\left(\mathrm{sin}\:{r}^{\mathrm{2}} \right)\mid_{\mathrm{0}} ^{\sqrt{\pi/\mathrm{2}}} \:=\:\boldsymbol{\pi}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *