Menu Close

calculate-D-e-x-2-y-2-x-2-y-2-z-2-dxdydz-with-D-x-y-z-R-3-0-x-1-1-y-2-and-2-z-3-




Question Number 62213 by maxmathsup by imad last updated on 17/Jun/19
calculate ∫∫∫_D  e^(−x^2 −y^2 ) (√(x^2  +y^2  +z^2 ))dxdydz with  D ={(x,y,z)∈R^3  /   0≤x≤1 , 1≤y≤2  and   2≤z≤3 }
calculateDex2y2x2+y2+z2dxdydzwithD={(x,y,z)R3/0x1,1y2and2z3}
Commented by prof Abdo imad last updated on 20/Jun/19
let use the diffeomorphism x=rcosθ  ,y=rsinθ  0≤x≤1 and 1≤y≤2 ⇒1 ≤x^2  +y^2 ≤5 ⇒1≤r≤(√5)  ∫∫∫_D e^(−x^2 −y^2 ) (√(x^2  +y^2  +z^2 ))dxdydz  =∫_2 ^3 (  ∫_1 ^(√5) (e^(−r^2 ) (√(r^2  +z^2 )))rdr∫_0 ^(π/2)  dθ)dz  =(π/2) ∫_2 ^3  (  ∫_1 ^(√5) (re^(−r^2 ) (√(r^2  +z^2 ))dr)dz but  by parts  ∫_1 ^(√5)  (re^(−r^2 ) )(√(r^2  +z^2 ))dr   =[−(1/2) e^(−r^2 ) (√(r^2  +z^2 ))]_1 ^(√5)   +(1/2)∫_1 ^(√5)  e^(−r^2 )   ((2r)/( (√(r^2  +z^2 )))) dr  =(1/2)(e^(−1) (√(1+z^2 ))−e^(−5) (√(5+z^2 ))) +∫_1 ^(√5)   ((re^(−r^2 ) )/( (√(r^2  +z^2 )))) dr  r =zu ⇒  ∫_1 ^(√5)  ((r e^(−r^2 ) )/( (√(r^2  +z^2 )))) dr =∫_(1/z) ^((√5)/z)     ((zu e^(−z^2 u^2 ) )/(z(√(1+u^2 )))) zdu  =z ∫_(1/z) ^((√5)/z)    ((u e^(−z^2 u^2 ) )/( (√(1+u^2 )))) du .....be continued...
letusethediffeomorphismx=rcosθ,y=rsinθ0x1and1y21x2+y251r5Dex2y2x2+y2+z2dxdydz=23(15(er2r2+z2)rdr0π2dθ)dz=π223(15(rer2r2+z2dr)dzbutbyparts15(rer2)r2+z2dr=[12er2r2+z2]15+1215er22rr2+z2dr=12(e11+z2e55+z2)+15rer2r2+z2drr=zu15rer2r2+z2dr=1z5zzuez2u2z1+u2zdu=z1z5zuez2u21+u2du..becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *