Menu Close

Calculate-d-n-dx-n-sinx-d-n-dx-n-lnx-




Question Number 108350 by Ar Brandon last updated on 16/Aug/20
Calculate (d^n /dx^n )(sinx) , (d^n /dx^n )(lnx)
Calculatedndxn(sinx),dndxn(lnx)
Answered by Dwaipayan Shikari last updated on 16/Aug/20
f(x)=logx  f′(x)=(1/x)  f′′(x)=−(1/x^2 )  f′′′(x)=(2/x^3 )  f^((iv)) =−(6/x^4 )  f^((v)) =((24)/x^5 )  ...f^((n)) =(−1)^(n+1) .(((n−1)!)/x^n )
f(x)=logxf(x)=1xf(x)=1x2f(x)=2x3f(iv)=6x4f(v)=24x5f(n)=(1)n+1.(n1)!xn
Answered by ajfour last updated on 16/Aug/20
y=sin x  (dy/dx)=y_1 =sin ((π/2)+x)  y_2 =sin [2((π/2))+x]  ....  y_n =sin [n((π/2))+x]
y=sinxdydx=y1=sin(π2+x)y2=sin[2(π2)+x].yn=sin[n(π2)+x]
Answered by mathmax by abdo last updated on 17/Aug/20
(d^n /dx^n )(sinx) =sin(x+((nπ)/2)) we can prove this by recurrence  (d/dx)(lnx) =(1/x) ⇒(d^n /dx^n )(lnx) =((1/x))^((n−1))  =(((−1)^(n−1) (n−1)!)/x^n )  for n≥1
dndxn(sinx)=sin(x+nπ2)wecanprovethisbyrecurrenceddx(lnx)=1xdndxn(lnx)=(1x)(n1)=(1)n1(n1)!xnforn1

Leave a Reply

Your email address will not be published. Required fields are marked *