Menu Close

calculate-D-x-2-x-y-dxdy-with-D-is-the-triangle-0-A-B-0-origin-A-1-0-B-0-1-




Question Number 89314 by abdomathmax last updated on 16/Apr/20
calculate ∫∫_D  x^2 (√(x+y))dxdy with D is the triangle  0 A B   (0 origin)   A(1,0)   B(0,1)
calculateDx2x+ydxdywithDisthetriangle0AB(0origin)A(1,0)B(0,1)
Commented by abdomathmax last updated on 18/Apr/20
the equation of line (AB) is x+y=1 ⇒y=1−x ⇒  ∫∫_D x^2 (√(x+y))dxdy =∫_0 ^1 (∫_0 ^(1−x) (√(x+y))dy)x^2  dx wehave  ∫_0 ^(1−x) (√(x+y))dy =_(x+y=t^2 )     ∫_(√x) ^1 t (2t)dt  =2 ∫_(√x) ^1 t^2  dt =(2/3)[t^3 ]_(√x) ^1  =(2/3)(1−x(√x)) ⇒  I =(2/3)∫_0 ^1 (1−x(√x))x^2 dx  =(2/3) ∫_0 ^1  x^2  dx−(2/3)∫_0 ^1 x^3 (√x)dx  =(2/9)−(2/3)∫_0 ^1  x^3 (√x)dx  we have  ∫_0 ^1  x^3 (√x)dx =_((√x)=u)    ∫_0 ^1 u^6 .u(2u)du  =2 ∫_0 ^1 u^8  du =(2/9) ⇒  I =(2/9)−(2/3)×(2/9) =(2/9)(1−(2/3))=(2/9)×(1/3)=(2/(27))
theequationofline(AB)isx+y=1y=1xDx2x+ydxdy=01(01xx+ydy)x2dxwehave01xx+ydy=x+y=t2x1t(2t)dt=2x1t2dt=23[t3]x1=23(1xx)I=2301(1xx)x2dx=2301x2dx2301x3xdx=292301x3xdxwehave01x3xdx=x=u01u6.u(2u)du=201u8du=29I=2923×29=29(123)=29×13=227

Leave a Reply

Your email address will not be published. Required fields are marked *