Question Number 89314 by abdomathmax last updated on 16/Apr/20
$${calculate}\:\int\int_{{D}} \:{x}^{\mathrm{2}} \sqrt{{x}+{y}}{dxdy}\:{with}\:{D}\:{is}\:{the}\:{triangle} \\ $$$$\mathrm{0}\:{A}\:{B}\:\:\:\left(\mathrm{0}\:{origin}\right)\:\:\:{A}\left(\mathrm{1},\mathrm{0}\right)\:\:\:{B}\left(\mathrm{0},\mathrm{1}\right) \\ $$
Commented by abdomathmax last updated on 18/Apr/20
$${the}\:{equation}\:{of}\:{line}\:\left({AB}\right)\:{is}\:{x}+{y}=\mathrm{1}\:\Rightarrow{y}=\mathrm{1}−{x}\:\Rightarrow \\ $$$$\int\int_{{D}} {x}^{\mathrm{2}} \sqrt{{x}+{y}}{dxdy}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\int_{\mathrm{0}} ^{\mathrm{1}−{x}} \sqrt{{x}+{y}}{dy}\right){x}^{\mathrm{2}} \:{dx}\:{wehave} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}−{x}} \sqrt{{x}+{y}}{dy}\:=_{{x}+{y}={t}^{\mathrm{2}} } \:\:\:\:\int_{\sqrt{{x}}} ^{\mathrm{1}} {t}\:\left(\mathrm{2}{t}\right){dt} \\ $$$$=\mathrm{2}\:\int_{\sqrt{{x}}} ^{\mathrm{1}} {t}^{\mathrm{2}} \:{dt}\:=\frac{\mathrm{2}}{\mathrm{3}}\left[{t}^{\mathrm{3}} \right]_{\sqrt{{x}}} ^{\mathrm{1}} \:=\frac{\mathrm{2}}{\mathrm{3}}\left(\mathrm{1}−{x}\sqrt{{x}}\right)\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{x}\sqrt{{x}}\right){x}^{\mathrm{2}} {dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{3}}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{2}} \:{dx}−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{3}} \sqrt{{x}}{dx} \\ $$$$=\frac{\mathrm{2}}{\mathrm{9}}−\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{3}} \sqrt{{x}}{dx}\:\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{\mathrm{3}} \sqrt{{x}}{dx}\:=_{\sqrt{{x}}={u}} \:\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\mathrm{6}} .{u}\left(\mathrm{2}{u}\right){du} \\ $$$$=\mathrm{2}\:\int_{\mathrm{0}} ^{\mathrm{1}} {u}^{\mathrm{8}} \:{du}\:=\frac{\mathrm{2}}{\mathrm{9}}\:\Rightarrow \\ $$$${I}\:=\frac{\mathrm{2}}{\mathrm{9}}−\frac{\mathrm{2}}{\mathrm{3}}×\frac{\mathrm{2}}{\mathrm{9}}\:=\frac{\mathrm{2}}{\mathrm{9}}\left(\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}\right)=\frac{\mathrm{2}}{\mathrm{9}}×\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{27}} \\ $$