Menu Close

calculate-D-x-2-y-2-dxdy-with-D-1-1-2-




Question Number 41343 by maxmathsup by imad last updated on 05/Aug/18
calculate    ∫∫_D  (x^2 −y^2 )dxdy  with  D = [−1,1]^2
calculateD(x2y2)dxdywithD=[1,1]2
Commented by maxmathsup by imad last updated on 08/Aug/18
I = ∫_(−1) ^1  (  ∫_(−1) ^1 (x^2 −y^2 )dx)dy but  ∫_(−1) ^1 (x^2 −y^2 )dx =2 ∫_0 ^1  (x^2 −y^2 )dx = 2[(x^3 /3) −y^2 x]_0 ^1    =2 { (1/3) −y^2 } =(2/3) −2y^2  ⇒ I = ∫_(−1) ^1  ((2/3)−2y^2 )dy  =(4/3) −2  ∫_(−1) ^1  y^2 dy =(4/3) −4 ∫_0 ^1 y^2 dy =(4/3) −4 [(y^3 /3)]_0 ^1  =(4/3) −(4/3) ⇒  I =0
I=11(11(x2y2)dx)dybut11(x2y2)dx=201(x2y2)dx=2[x33y2x]01=2{13y2}=232y2I=11(232y2)dy=43211y2dy=43401y2dy=434[y33]01=4343I=0
Answered by alex041103 last updated on 08/Aug/18
∫∫_D  (x^2 −y^2 )dxdy=∫_(−1) ^1 ∫_(−1) ^1 (x^2 −y^2 )dxdy=  =∫_(−1) ^1 [(x^3 /3)−y^2 x]_(x=−1) ^(x=1) dy=  =∫_(−1) ^1 ((2/3)−2y^2 )dy=[(2/3)y−((2y^3 )/3)]_(y=−1) ^(y=1) =  =(4/3)−(4/3)=0  ∫∫_D  (x^2 −y^2 )dxdy=0
D(x2y2)dxdy=1111(x2y2)dxdy==11[x33y2x]x=1x=1dy==11(232y2)dy=[23y2y33]y=1y=1==4343=0D(x2y2)dxdy=0

Leave a Reply

Your email address will not be published. Required fields are marked *