Menu Close

calculate-D-x-2-y-2-z-2-dxdydz-with-D-x-y-z-0-x-1-1-y-2-2-z-3-




Question Number 61645 by maxmathsup by imad last updated on 05/Jun/19
calculate ∫∫_D ∫(√(x^2 +y^2 +z^2 ))dxdydz  with D ={(x,y,z) / 0≤x≤1  ,1≤y≤2  , 2≤z≤3 }
calculateDx2+y2+z2dxdydzwithD={(x,y,z)/0x1,1y2,2z3}
Commented by maxmathsup by imad last updated on 06/Jun/19
let I =∫∫∫_D (√(x^2 +y^2  +z^2 ))dxdydz ⇒ I =∫_2 ^3  A(z)dz with  A(z) =∫∫_w (√(x^2  +y^2  +z^2 ))dxdy   let consider the diffeomorphism  x =r cosθ  and y =rsinθ     we have 0≤x≤1  and 1≤y≤2 ⇒  1 ≤x^2  +y^2 ≤5 ⇒1≤r^2 ≤5 ⇒1≤r≤(√(5 )) ⇒  A(z) =∫∫_(1≤r≤(√5)  and   0≤θ≤(π/2))     (√(r^2  +z^2 ))rdrdθ  =(π/2) ∫_1 ^(√5)  r(r^2  +z^2 )^(1/2)  dr =(π/2)[  (1/3)(r^2  +z^2 )^(3/2) ]_1 ^(√5)  =(π/6){(z^2  +5)^(3/2) −(z^2  +1)^(3/2) } ⇒  I = (π/6)∫_2 ^3   (z^2  +5)^(3/2) dz −(π/6) ∫_2 ^3  (z^2  +1)^(3/2)  dz  ∫_2 ^3 (1+z^2 )^(3/2)  dz =_(z =sh(t))     ∫_(argsh(2)) ^(argsh(3))    (ch^2 t)^(3/2)  ch(t)dt =∫_(ln(2+(√5))) ^(ln(3+(√(10))))  ch^4 t dt  =∫_(ln(2+(√5))) ^(ln(3+10))   (((1+ch(2t))/2))^2 dt =(1/4) ∫_(ln(2+(√5))) ^(ln(3+(√(10)))) (1+2ch(2t)+ch^2 (2t))dt  =(1/4){ln(3+(√(10)))−ln(2+(√5))) +(1/4)[sh(2t)]_(ln(2+(√5))) ^(ln(3+(√(10))))  + (1/8) ∫_(ln(2+(√5))) ^(ln(3+(√(10)))) (1+ch(4t))dt  =  .....rest to acheive the calculus  for the integral ∫_2 ^3 (z^2  +5)^(3/2) dz  we do the chang.z =(√5)sh(t)....
letI=Dx2+y2+z2dxdydzI=23A(z)dzwithA(z)=wx2+y2+z2dxdyletconsiderthediffeomorphismx=rcosθandy=rsinθwehave0x1and1y21x2+y251r251r5A(z)=1r5and0θπ2r2+z2rdrdθ=π215r(r2+z2)12dr=π2[13(r2+z2)32]15=π6{(z2+5)32(z2+1)32}I=π623(z2+5)32dzπ623(z2+1)32dz23(1+z2)32dz=z=sh(t)argsh(2)argsh(3)(ch2t)32ch(t)dt=ln(2+5)ln(3+10)ch4tdt=ln(2+5)ln(3+10)(1+ch(2t)2)2dt=14ln(2+5)ln(3+10)(1+2ch(2t)+ch2(2t))dt=14{ln(3+10)ln(2+5))+14[sh(2t)]ln(2+5)ln(3+10)+18ln(2+5)ln(3+10)(1+ch(4t))dt=..resttoacheivethecalculusfortheintegral23(z2+5)32dzwedothechang.z=5sh(t).

Leave a Reply

Your email address will not be published. Required fields are marked *