Menu Close

calculate-D-x-2-y-2-z-2-dxdydz-with-D-x-y-z-0-x-1-1-y-2-2-z-3-




Question Number 61645 by maxmathsup by imad last updated on 05/Jun/19
calculate ∫∫_D ∫(√(x^2 +y^2 +z^2 ))dxdydz  with D ={(x,y,z) / 0≤x≤1  ,1≤y≤2  , 2≤z≤3 }
$${calculate}\:\int\int_{{D}} \int\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} }{dxdydz} \\ $$$${with}\:{D}\:=\left\{\left({x},{y},{z}\right)\:/\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:,\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\:,\:\mathrm{2}\leqslant{z}\leqslant\mathrm{3}\:\right\} \\ $$
Commented by maxmathsup by imad last updated on 06/Jun/19
let I =∫∫∫_D (√(x^2 +y^2  +z^2 ))dxdydz ⇒ I =∫_2 ^3  A(z)dz with  A(z) =∫∫_w (√(x^2  +y^2  +z^2 ))dxdy   let consider the diffeomorphism  x =r cosθ  and y =rsinθ     we have 0≤x≤1  and 1≤y≤2 ⇒  1 ≤x^2  +y^2 ≤5 ⇒1≤r^2 ≤5 ⇒1≤r≤(√(5 )) ⇒  A(z) =∫∫_(1≤r≤(√5)  and   0≤θ≤(π/2))     (√(r^2  +z^2 ))rdrdθ  =(π/2) ∫_1 ^(√5)  r(r^2  +z^2 )^(1/2)  dr =(π/2)[  (1/3)(r^2  +z^2 )^(3/2) ]_1 ^(√5)  =(π/6){(z^2  +5)^(3/2) −(z^2  +1)^(3/2) } ⇒  I = (π/6)∫_2 ^3   (z^2  +5)^(3/2) dz −(π/6) ∫_2 ^3  (z^2  +1)^(3/2)  dz  ∫_2 ^3 (1+z^2 )^(3/2)  dz =_(z =sh(t))     ∫_(argsh(2)) ^(argsh(3))    (ch^2 t)^(3/2)  ch(t)dt =∫_(ln(2+(√5))) ^(ln(3+(√(10))))  ch^4 t dt  =∫_(ln(2+(√5))) ^(ln(3+10))   (((1+ch(2t))/2))^2 dt =(1/4) ∫_(ln(2+(√5))) ^(ln(3+(√(10)))) (1+2ch(2t)+ch^2 (2t))dt  =(1/4){ln(3+(√(10)))−ln(2+(√5))) +(1/4)[sh(2t)]_(ln(2+(√5))) ^(ln(3+(√(10))))  + (1/8) ∫_(ln(2+(√5))) ^(ln(3+(√(10)))) (1+ch(4t))dt  =  .....rest to acheive the calculus  for the integral ∫_2 ^3 (z^2  +5)^(3/2) dz  we do the chang.z =(√5)sh(t)....
$${let}\:{I}\:=\int\int\int_{{D}} \sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdydz}\:\Rightarrow\:{I}\:=\int_{\mathrm{2}} ^{\mathrm{3}} \:{A}\left({z}\right){dz}\:{with} \\ $$$${A}\left({z}\right)\:=\int\int_{{w}} \sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{dxdy}\:\:\:{let}\:{consider}\:{the}\:{diffeomorphism} \\ $$$${x}\:={r}\:{cos}\theta\:\:{and}\:{y}\:={rsin}\theta\:\:\:\:\:{we}\:{have}\:\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\:\:{and}\:\mathrm{1}\leqslant{y}\leqslant\mathrm{2}\:\Rightarrow \\ $$$$\mathrm{1}\:\leqslant{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \leqslant\mathrm{5}\:\Rightarrow\mathrm{1}\leqslant{r}^{\mathrm{2}} \leqslant\mathrm{5}\:\Rightarrow\mathrm{1}\leqslant{r}\leqslant\sqrt{\mathrm{5}\:}\:\Rightarrow \\ $$$${A}\left({z}\right)\:=\int\int_{\mathrm{1}\leqslant{r}\leqslant\sqrt{\mathrm{5}}\:\:{and}\:\:\:\mathrm{0}\leqslant\theta\leqslant\frac{\pi}{\mathrm{2}}} \:\:\:\:\sqrt{{r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} }{rdrd}\theta \\ $$$$=\frac{\pi}{\mathrm{2}}\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:{r}\left({r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:{dr}\:=\frac{\pi}{\mathrm{2}}\left[\:\:\frac{\mathrm{1}}{\mathrm{3}}\left({r}^{\mathrm{2}} \:+{z}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right]_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} \:=\frac{\pi}{\mathrm{6}}\left\{\left({z}^{\mathrm{2}} \:+\mathrm{5}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} −\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \right\}\:\Rightarrow \\ $$$${I}\:=\:\frac{\pi}{\mathrm{6}}\int_{\mathrm{2}} ^{\mathrm{3}} \:\:\left({z}^{\mathrm{2}} \:+\mathrm{5}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dz}\:−\frac{\pi}{\mathrm{6}}\:\int_{\mathrm{2}} ^{\mathrm{3}} \:\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:{dz} \\ $$$$\int_{\mathrm{2}} ^{\mathrm{3}} \left(\mathrm{1}+{z}^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:{dz}\:=_{{z}\:={sh}\left({t}\right)} \:\:\:\:\int_{{argsh}\left(\mathrm{2}\right)} ^{{argsh}\left(\mathrm{3}\right)} \:\:\:\left({ch}^{\mathrm{2}} {t}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} \:{ch}\left({t}\right){dt}\:=\int_{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} ^{{ln}\left(\mathrm{3}+\sqrt{\mathrm{10}}\right)} \:{ch}^{\mathrm{4}} {t}\:{dt} \\ $$$$=\int_{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} ^{{ln}\left(\mathrm{3}+\mathrm{10}\right)} \:\:\left(\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{2}}\right)^{\mathrm{2}} {dt}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\int_{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} ^{{ln}\left(\mathrm{3}+\sqrt{\mathrm{10}}\right)} \left(\mathrm{1}+\mathrm{2}{ch}\left(\mathrm{2}{t}\right)+{ch}^{\mathrm{2}} \left(\mathrm{2}{t}\right)\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left\{{ln}\left(\mathrm{3}+\sqrt{\mathrm{10}}\right)−{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\right)\:+\frac{\mathrm{1}}{\mathrm{4}}\left[{sh}\left(\mathrm{2}{t}\right)\right]_{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} ^{{ln}\left(\mathrm{3}+\sqrt{\mathrm{10}}\right)} \:+\:\frac{\mathrm{1}}{\mathrm{8}}\:\int_{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} ^{{ln}\left(\mathrm{3}+\sqrt{\mathrm{10}}\right)} \left(\mathrm{1}+{ch}\left(\mathrm{4}{t}\right)\right){dt} \\ $$$$=\:\:…..{rest}\:{to}\:{acheive}\:{the}\:{calculus}\:\:{for}\:{the}\:{integral}\:\int_{\mathrm{2}} ^{\mathrm{3}} \left({z}^{\mathrm{2}} \:+\mathrm{5}\right)^{\frac{\mathrm{3}}{\mathrm{2}}} {dz} \\ $$$${we}\:{do}\:{the}\:{chang}.{z}\:=\sqrt{\mathrm{5}}{sh}\left({t}\right)…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *