Menu Close

calculate-D-x-y-1-x-2-y-2-dxdy-with-D-x-y-R-2-x-0-y-0-x-2-y-2-lt-1-




Question Number 46846 by maxmathsup by imad last updated on 01/Nov/18
calculate ∫∫_D     ((x+y)/( (√(1−x^2 −y^2 ))))dxdy with D={(x,y)∈R^2 /x≥0,y≥0,x^2  +y^2 <1}
calculateDx+y1x2y2dxdywithD={(x,y)R2/x0,y0,x2+y2<1}
Commented by maxmathsup by imad last updated on 03/Nov/18
let consider the diffeomorphisme (r,θ)→ϕ(r,θ)=(x,y) with  x =rcosθ and y =rsinθ ⇒  ∫∫_D  f(x,y)dxdy =∫∫_w foϕ(r,θ)rdrdθ =∫∫_(0≤r≤1 and 0≤θ≤(π/2))    ((rcosθ +rsinθ)/( (√(1−r^2 )))) rdrdθ  = ∫_0 ^1   (r^2 /( (√(1−r^2 )))) dr∫_0 ^(π/2) (cosθ +sinθ)dθ  but ∫_0 ^(π/2) (cosθ +sinθ)dθ  =[sinθ −cosθ]_0 ^(π/2)  =1 +1 =2   also changement r =sint give  ∫_0 ^1   (r^2 /( (√(1−r^2 ))))dr =∫_0 ^(π/2)   ((sin^2 t)/(cost)) cost dt =∫_0 ^(π/2)  ((1−cos(2t))/2)dt  =(π/4) −(1/4)[sin(2t)]_0 ^(π/2)  =(π/4) ⇒∫∫_D ((x+y)/( (√(1−x^2 −y^2 ))))dxdy =(π/2) .
letconsiderthediffeomorphisme(r,θ)φ(r,θ)=(x,y)withx=rcosθandy=rsinθDf(x,y)dxdy=wfoφ(r,θ)rdrdθ=0r1and0θπ2rcosθ+rsinθ1r2rdrdθ=01r21r2dr0π2(cosθ+sinθ)dθbut0π2(cosθ+sinθ)dθ=[sinθcosθ]0π2=1+1=2alsochangementr=sintgive01r21r2dr=0π2sin2tcostcostdt=0π21cos(2t)2dt=π414[sin(2t)]0π2=π4Dx+y1x2y2dxdy=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *