Menu Close

calculate-D-x-y-e-x-y-dxdy-with-D-x-y-R-2-0-lt-x-lt-2-and-1-lt-y-lt-2-




Question Number 36190 by prof Abdo imad last updated on 30/May/18
calculate  ∫∫_D (x+y)e^(x+y) dxdy  with  D = {(x,y)∈R^2  / 0<x<2 and  1<y<2 }
calculateD(x+y)ex+ydxdywithD={(x,y)R2/0<x<2and1<y<2}
Commented by maxmathsup by imad last updated on 20/Aug/18
I =∫_1 ^2   (∫_0 ^2   (x+y)e^(x+y) dx)dy =∫_1 ^2   A(y)dy with A(y)=∫_0 ^2 (x+y)e^(x+y)  dx  A(y) = e^(y )  ∫_0 ^2 (x+y)e^x dx  =e^y   ∫_0 ^2  (xe^x  +y e^x )ex  =e^y {  ∫_0 ^2  xe^x  dx  +y ∫_0 ^2  e^x dx} but  ∫_0 ^2  e^x dx =[e^x ]_0 ^2  =e^2 −1  and by parts   ∫_0 ^2  x e^x dx =[x e^x ]_0 ^2  −∫_0 ^2  e^x dx =2e^2  −e^2  +1 =e^2  +1 ⇒A(y)=e^y (e^2  +1+y(e^2 −1))  =(e^2  +1)e^y  +(e^2 −1)y e^y  ⇒  I = ∫_1 ^2  {  (e^2  +1)e^y  +(e^2  −1)ye^y )dy  =(e^2 +1)∫_1 ^2  e^y dy +(e^2 −1) ∫_1 ^2 y e^y  dy  but  ∫_1 ^2  e^y dy =e^2  −e   and  ∫_1 ^2  y e^y dy =[y e^y ]_1 ^2  −∫_1 ^2  e^y dy  =2e^2  −e −e^2  +e =e^2  ⇒ I =(e^2  +1)(e^2  −e) +(e^2  −1)e^2   I =e^4  −e^3  +e^2  −e +e^4  −e^2  ⇒ I =2e^(4 )  −e^3  .
I=12(02(x+y)ex+ydx)dy=12A(y)dywithA(y)=02(x+y)ex+ydxA(y)=ey02(x+y)exdx=ey02(xex+yex)ex=ey{02xexdx+y02exdx}but02exdx=[ex]02=e21andbyparts02xexdx=[xex]0202exdx=2e2e2+1=e2+1A(y)=ey(e2+1+y(e21))=(e2+1)ey+(e21)yeyI=12{(e2+1)ey+(e21)yey)dy=(e2+1)12eydy+(e21)12yeydybut12eydy=e2eand12yeydy=[yey]1212eydy=2e2ee2+e=e2I=(e2+1)(e2e)+(e21)e2I=e4e3+e2e+e4e2I=2e4e3.

Leave a Reply

Your email address will not be published. Required fields are marked *