calculate-D-xe-x-siny-dy-with-D-is-the-triangle-OAB-O-0-0-A-1-0-B-0-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 89312 by abdomathmax last updated on 16/Apr/20 calculate∫∫Dxe−xsinydywithDisthetriangleOABO(0,0)A(1,0)B(0,1) Commented by mathmax by abdo last updated on 17/Apr/20 theequationofline(AB)isx+y=1⇒y=1−x⇒∫∫Dxe−xsinydxdy=∫01(∫01−xsinydy)xe−xdxwehave∫01−xsinydy=[−cosy]01−x=1−cos(1−x)⇒I=∫01(1−cos(1−x))xe−xdx=∫01xe−xdx−∫01xe−xcos(1−x)dxbut∫01xe−xdx=[−xe−x]01+∫01e−xdx=−e−1+[−e−x]01=−e−1+1−e−1=1−2e−1∫01xe−xcos(1−x)dx=Re(∫01xe−xei(1−x)dx)∫01xe−x+i−ixex=ei∫01xe−(1+i)xdx=ei{[x−(1+i)e−(1+i)x]01−∫011−(1+i)e−(1+i)xdx}=ei{−1(1+i)(e−(1+i)−1)+11+i[−11+ie−(1+i)x]01}=−ei1+i(e−(1+i)−1)−ei(1+i)2(e−(1+i)−1)=−(1−i)2(e−1−ei)−e−1−ei2i=ei−e−12(1−i+1i)=ei−e−12(1−2i)=12(1−2i)(cos(1)+isin(1)−e−1)=12{cos(1)+isin(1)−e−1−2icos(1)+2sin(1)+2ie−1}⇒∫01xe−xcos(1−x)dx=cos(1)+2sin(1)−e−12⇒I=1−2e−1−12{cos(1)+2sin(1)−e−1} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-sum-n-1-1-n-2-3-n-Next Next post: Question-154851 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.