Menu Close

calculate-D-xe-x-siny-dy-with-D-is-the-triangle-OAB-O-0-0-A-1-0-B-0-1-




Question Number 89312 by abdomathmax last updated on 16/Apr/20
calculate ∫∫_D  xe^(−x) siny dy with D is the triangle  OAB    O(0,0)  A(1,0) B(0,1)
calculateDxexsinydywithDisthetriangleOABO(0,0)A(1,0)B(0,1)
Commented by mathmax by abdo last updated on 17/Apr/20
the equation of line (AB) is x+y =1 ⇒y =1−x ⇒  ∫∫_D xe^(−x)  siny dxdy =∫_0 ^1 (∫_0 ^(1−x) sinydy)xe^(−x)  dx  we have ∫_0 ^(1−x)  siny dy =[−cosy]_0 ^(1−x) =1−cos(1−x) ⇒  I =∫_0 ^1 (1−cos(1−x))xe^(−x)  dx  =∫_0 ^1  xe^(−x)  dx−∫_0 ^1  xe^(−x)  cos(1−x)dx  but  ∫_0 ^1  xe^(−x)  dx =[−xe^(−x) ]_0 ^1  +∫_0 ^1  e^(−x)  dx =−e^(−1)  +[−e^(−x) ]_0 ^1   =−e^(−1) +1−e^(−1)  =1−2e^(−1)   ∫_0 ^1  xe^(−x)  cos(1−x)dx =Re(∫_0 ^1  xe^(−x) e^(i(1−x))  dx)  ∫_0 ^1  xe^(−x+i−ix)  ex =e^i ∫_0 ^1  x e^(−(1+i)x)  dx  =e^i {  [ (x/(−(1+i))) e^(−(1+i)x) ]_0 ^1  −∫_0 ^1 (1/(−(1+i)))e^(−(1+i)x) dx}  =e^i {−(1/((1+i)))(e^(−(1+i)) −1)+(1/(1+i))[−(1/(1+i))e^(−(1+i)x) ]_0 ^1 }  =−(e^i /(1+i))(e^(−(1+i)) −1)−(e^i /((1+i)^2 ))(e^(−(1+i)) −1)  =−(((1−i))/2)(e^(−1) −e^i )−((e^(−1) −e^i )/(2i))  =((e^i −e^(−1) )/2)(1−i +(1/i)) =((e^i −e^(−1) )/2)(1−2i)  =(1/2)(1−2i)(cos(1)+isin(1)−e^(−1) )  =(1/2){cos(1)+isin(1)−e^(−1) −2icos(1)+2sin(1)+2ie^(−1) } ⇒  ∫_0 ^1  x e^(−x)  cos(1−x)dx =((cos(1)+2sin(1)−e^(−1) )/2) ⇒  I =1−2e^(−1) −(1/2){cos(1)+2sin(1)−e^(−1) }
theequationofline(AB)isx+y=1y=1xDxexsinydxdy=01(01xsinydy)xexdxwehave01xsinydy=[cosy]01x=1cos(1x)I=01(1cos(1x))xexdx=01xexdx01xexcos(1x)dxbut01xexdx=[xex]01+01exdx=e1+[ex]01=e1+1e1=12e101xexcos(1x)dx=Re(01xexei(1x)dx)01xex+iixex=ei01xe(1+i)xdx=ei{[x(1+i)e(1+i)x]01011(1+i)e(1+i)xdx}=ei{1(1+i)(e(1+i)1)+11+i[11+ie(1+i)x]01}=ei1+i(e(1+i)1)ei(1+i)2(e(1+i)1)=(1i)2(e1ei)e1ei2i=eie12(1i+1i)=eie12(12i)=12(12i)(cos(1)+isin(1)e1)=12{cos(1)+isin(1)e12icos(1)+2sin(1)+2ie1}01xexcos(1x)dx=cos(1)+2sin(1)e12I=12e112{cos(1)+2sin(1)e1}

Leave a Reply

Your email address will not be published. Required fields are marked *