calculate-D-xy-1-x-2-y-2-dxdy-with-D-x-y-R-2-0-x-1-0-y-1-x-2-y-2-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42395 by abdo.msup.com last updated on 24/Aug/18 calculate∫∫Dxy(1+x2+y2)dxdywithD={(x,y)∈R2/0⩽x⩽1,0⩽y⩽1,x2+y2⩽1} Commented by maxmathsup by imad last updated on 25/Aug/18 letconsiderthediffeomorphisme(r,θ)→(x,y)=(rcosθ,rsinθ)∫∫Df(x,y)dxdy=∫∫Wfoφ(t)∣Jφ∣drdθ=∫∫0⩽θ⩽π2and0⩽r⩽1r2cosθsinθ(1+r2)rdrdθ=∫0π2(∫01r31+r2dr)cosθsinθdθ=∫01r31+r2dr.(12∫0π2sin(2θ)dθ)but∫0π2sin(2θ)dθ=[12cos(2θ)]0π2=12(−2)=−1andchangementr=tanαgive∫01r31+r2dr=∫0π4tan3α(1+tan2α)(1+tan2α)dα=∫0π4tan3αdαletA=∫0π4tan3tdtA=∫0π4(1+tan2t−1)tantdt=∫0π4(1+tan2t)tantdt−∫0π4tantdt=[tanttant]0π4−∫0π4tant(1+tan2t)dt−∫0π4tantdt=1−2∫0π4tantdt−∫0π4tan3tdt⇒2A=1−2∫0π4tantdt⇒A=12−∫0π4sintcostdt=12+[ln∣cost∣]0π4=12+ln(12)=12−12ln(2)⇒∫∫Dxy(1+x2+y2)dxdy=ln(2)2−12.erroratthefinalline∫∫xy1+x2+y2dxdy=12(ln(2)2−12)=ln(2)4−14. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-dt-t-1-t-2-dt-Next Next post: BeMath-Given-tan-x-y-3-4-tan-x-2-find-tan-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.