Menu Close

calculate-D-xy-1-x-2-y-2-dxdy-with-D-x-y-R-2-0-x-1-0-y-1-x-2-y-2-1-




Question Number 42395 by abdo.msup.com last updated on 24/Aug/18
calculate ∫∫_D       ((xy)/((1+x^2  +y^2 )))dxdy with  D ={(x,y)∈ R^2   /    0≤x≤1 ,0≤y≤1, x^2  +y^2  ≤1}
calculateDxy(1+x2+y2)dxdywithD={(x,y)R2/0x1,0y1,x2+y21}
Commented by maxmathsup by imad last updated on 25/Aug/18
let consider the diffeomorphisme (r,θ) →(x,y) =(rcosθ,rsinθ)  ∫∫_D f(x,y)dxdy = ∫∫_W foϕ(t) ∣J_ϕ ∣ dr dθ  = ∫∫_(0≤θ≤(π/(2 ))   and  0≤r≤1)   ((r^2  cosθ sinθ)/((1+r^2 ))) rdr dθ  =∫_0 ^(π/2)   (  ∫_0 ^1    (r^3 /(1+r^2 ))dr)cosθ sinθ dθ = ∫_0 ^1   (r^3 /(1+r^2 ))dr .((1/2) ∫_0 ^(π/2)  sin(2θ)dθ) but  ∫_0 ^(π/2)   sin(2θ)dθ =[(1/2)cos(2θ)]_0 ^(π/2)  =(1/2)(−2) =−1 and  changement r =tanα give  ∫_0 ^1    (r^3 /(1+r^2 )) dr = ∫_0 ^(π/4)    ((tan^3 α)/((1+tan^2 α))) (1+tan^2 α)dα  =∫_0 ^(π/4)  tan^3 α dα    let  A =∫_0 ^(π/4)  tan^3 t dt  A=∫_0 ^(π/4) (1+tan^2 t −1)tant dt =∫_0 ^(π/4)   (1+tan^2 t)tantdt −∫_0 ^(π/4)  tant dt  =[tant tant]_0 ^(π/4)  −∫_0 ^(π/4)  tant(1+tan^2 t)dt  −∫_0 ^(π/4)  tant dt  =1−2 ∫_0 ^(π/4)  tant dt  −∫_0 ^(π/4)  tan^3 t dt ⇒2A =1−2 ∫_0 ^(π/4)  tant dt ⇒  A =(1/2) −∫_0 ^(π/4)   ((sint)/(cost)) dt =(1/2) +[ln∣cost∣]_0 ^(π/4)  =(1/2) +ln((1/( (√2)))) =(1/2) −(1/2)ln(2) ⇒  ∫∫_D    ((xy)/((1+x^2  +y^2 )))dx dy =((ln(2))/2) −(1/2) .  error at the final line   ∫∫    ((xy)/(1+x^2  +y^2 ))dxdy =(1/2)(((ln(2))/2) −(1/2))  =((ln(2))/4) −(1/4) .
letconsiderthediffeomorphisme(r,θ)(x,y)=(rcosθ,rsinθ)Df(x,y)dxdy=Wfoφ(t)Jφdrdθ=0θπ2and0r1r2cosθsinθ(1+r2)rdrdθ=0π2(01r31+r2dr)cosθsinθdθ=01r31+r2dr.(120π2sin(2θ)dθ)but0π2sin(2θ)dθ=[12cos(2θ)]0π2=12(2)=1andchangementr=tanαgive01r31+r2dr=0π4tan3α(1+tan2α)(1+tan2α)dα=0π4tan3αdαletA=0π4tan3tdtA=0π4(1+tan2t1)tantdt=0π4(1+tan2t)tantdt0π4tantdt=[tanttant]0π40π4tant(1+tan2t)dt0π4tantdt=120π4tantdt0π4tan3tdt2A=120π4tantdtA=120π4sintcostdt=12+[lncost]0π4=12+ln(12)=1212ln(2)Dxy(1+x2+y2)dxdy=ln(2)212.erroratthefinallinexy1+x2+y2dxdy=12(ln(2)212)=ln(2)414.

Leave a Reply

Your email address will not be published. Required fields are marked *