Menu Close

calculate-D-xy-e-x-2-y-2-dxdy-with-D-x-y-R-2-0-x-2-and-1-y-3-




Question Number 57320 by turbo msup by abdo last updated on 02/Apr/19
calculate ∫∫_D xy e^(−x^2 −y^2 )  dxdy  with D={(x,y)∈R^2 / 0≤x≤2 and  1≤y≤3}
calculateDxyex2y2dxdywithD={(x,y)R2/0x2and1y3}
Commented by maxmathsup by imad last updated on 02/Apr/19
∫∫_D xy e^(−x^2 −y^2 ) dxdy =∫_0 ^2  x e^(−x^2 ) dx .∫_1 ^3  y e^(−y^2 ) dy  but  ∫_0 ^2  x e^(−x^2 ) dx =[−(1/2)e^(−x^2 ) ]_0 ^2  =−(1/2){e^(−4)  −1}=(1/2){1−e^(−4) )  ∫_1 ^3  y e^(−y^2 ) dy =[−(1/2)e^(−y^2 ) ]_1 ^3  =−(1/2){e^(−9)  −e^(−1) } =(1/2){ e^(−1)  −e^(−9) } ⇒  ∫∫_D xy e^(−x^2  −y^2 ) dxdy =(1/4)(1−e^(−4) )(e^(−1)  −e^(−9) )  =(1/4){e^(−1)  −e^(−9)  −e^(−5)  +e^(−13) } .
Dxyex2y2dxdy=02xex2dx.13yey2dybut02xex2dx=[12ex2]02=12{e41}=12{1e4)13yey2dy=[12ey2]13=12{e9e1}=12{e1e9}Dxyex2y2dxdy=14(1e4)(e1e9)=14{e1e9e5+e13}.
Answered by kaivan.ahmadi last updated on 02/Apr/19
∫_1 ^3 ∫_0 ^2 xye^(−x^2 −y^2 ) dxdy=((−1)/2)∫_1 ^3   ye^(−x^2 −y^2 ) ∣_0 ^2 dy=   ((−1)/2)∫_1 ^3 (ye^(−4−y^2 ) −ye^(−y^2 ) )dy=  ((−1)/2)(((−1)/2)e^(−4−y^2 ) +(1/2)e^(−y^2 ) )_1 ^3 =  ((−1)/4)[(e^(−4−9) +e^(−9) )−(e^(−4−1) +e^(−1) )]=  ((−1)/4)(e^(−13) +e^(−9) −e^(−5) −e^(−1) )
1302xyex2y2dxdy=1213yex2y202dy=1213(ye4y2yey2)dy=12(12e4y2+12ey2)13=14[(e49+e9)(e41+e1)]=14(e13+e9e5e1)

Leave a Reply

Your email address will not be published. Required fields are marked *