Menu Close

calculate-dt-1-it-1-it-2-




Question Number 32715 by caravan msup abdo. last updated on 31/Mar/18
calculate ∫_(−∞) ^(+∞)    (dt/((1+it)(1+it^2 )))  .
calculate+dt(1+it)(1+it2).
Commented by abdo imad last updated on 03/Apr/18
let put ϕ(z) = (1/((1+iz)(1+iz^2 )))  ϕ(z) =  (1/((iz −i^2 )(iz^2  −i^2 )))  ((−1)/((z−i)(z^2 −i)))  = ((−1)/((z−i)(z−(√i))(z+(√i)))) =  ((−1)/((z−i)(z −e^(i(π/4)) )(z +e^(i(π/4)) )))  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ( Res(ϕ,i) +Res(ϕ,e^(i(π/4)) ))  Res(ϕ,i) =lim_(z→i) (z−i)ϕ(z)= ((−1)/(−1−i)) = (1/(1+i))=((1−i)/2)  Res(ϕ,e^(i(π/4)) ) =lim_(z→e^(i(π/4)) )   (z−e^(i(π/4)) )ϕ(z)   =  ((−1)/((e^(i(π/4))  −i)(2e^(i(π/4)) )))  = ((−1)/(2i −2i e^(i(π/4)) )) = (i/(2 (1−e^(i(π/4)) )))  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ( ((1−i)/2) + (i/(2(1−e^(i(π/4)) ))))  .
letputφ(z)=1(1+iz)(1+iz2)φ(z)=1(izi2)(iz2i2)1(zi)(z2i)=1(zi)(zi)(z+i)=1(zi)(zeiπ4)(z+eiπ4)+φ(z)dz=2iπ(Res(φ,i)+Res(φ,eiπ4))Res(φ,i)=limzi(zi)φ(z)=11i=11+i=1i2Res(φ,eiπ4)=limzeiπ4(zeiπ4)φ(z)=1(eiπ4i)(2eiπ4)=12i2ieiπ4=i2(1eiπ4)+φ(z)dz=2iπ(1i2+i2(1eiπ4)).

Leave a Reply

Your email address will not be published. Required fields are marked *