Menu Close

calculate-dx-1-x-x-2-3-




Question Number 35055 by math khazana by abdo last updated on 14/May/18
calculate ∫_(−∞) ^(+∞)      (dx/((1+x+x^2 )^3 ))
calculate+dx(1+x+x2)3
Commented by math khazana by abdo last updated on 15/May/18
let put I = ∫_(−∞) ^(+∞)     (dx/((1+x+x^2 )^3 ))  I =∫_(−∞) ^(+∞)      (dx/({(x+(1/2))^2   +(3/4)}^3 ))? changement  x+(1/2) =((√3)/2)tant gibe  I = ∫_(−(π/3)) ^(π/2)            (1/(((3/4))^3 (1+tan^2 t)^3 )) ((√3)/2)( 1+tan^2 t)dt  =(4^3 /3^3 ) ((√3)/2)  ∫_(−(π/2)) ^(π/2)       (dt/((1+tan^2 t)^2 ))  =(4^3 /3^3 ) (√3)  ∫_0 ^(π/2)  cos^4 tdt  = (4^3 /3^3 ) (√3)  ∫_0 ^(π/2)   (((1+cos(2t))^2 )/4)dt  = ((16)/(27)) (√3)  ∫_0 ^(π/2) (1+2cos(2t)  +((1+cos(4t))/2))dt  = ((8π(√3))/(27))   +((4π(√3))/(27)) = ((12π(√3))/(3.9)) =((4π(√3))/9)  I = ((4π(√3))/9) .
letputI=+dx(1+x+x2)3I=+dx{(x+12)2+34}3?changementx+12=32tantgibeI=π3π21(34)3(1+tan2t)332(1+tan2t)dt=433332π2π2dt(1+tan2t)2=433330π2cos4tdt=433330π2(1+cos(2t))24dt=162730π2(1+2cos(2t)+1+cos(4t)2)dt=8π327+4π327=12π33.9=4π39I=4π39.
Commented by abdo imad last updated on 17/May/18
let introduce the complex function ϕ(z)= (1/((1+z+z^2 )^3 ))  the[poles of ϕ are j=e^(i((2π)/3))   and j^− =e^(−i((2π)/3))  (triple poles  ϕ(z)=  (1/((z−j)^3 (z−j^− )^3 ))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,j) but   Res(ϕ,j) =lim_(z→j)     (1/((3−1)!)){ (z−j)^3 ϕ(z)}^((2))   =lim_(z→j)  (1/2) {(z−j^− )^(−3) }^((2))    but we have  {(z−j^− )^(−3) }^((1)) =−3(z−j^− )^(−4)   {(z−j^− )}^((2)) = 12(z−j^− )^(−5)   Res(ϕ,j) =lim_(z→j)   6(z−j^− )^(−5) =6(j−j^− )^(−5)   =6(2i ((√3)/2))^(−5) =(6/((i(√3))^5 )) = (6/(i 9(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ  (6/(i9(√3))) = ((2π .3.2)/(3.3(√3))) = ((4π)/(3(√3))) ⇒  ★∫_(−∞) ^(+∞)    (dx/((1+x+x^2 )^3 )) = ((4π(√3))/9)  ★
letintroducethecomplexfunctionφ(z)=1(1+z+z2)3the[polesofφarej=ei2π3andj=ei2π3(triplepolesφ(z)=1(zj)3(zj)3+φ(z)dz=2iπRes(φ,j)butRes(φ,j)=limzj1(31)!{(zj)3φ(z)}(2)=limzj12{(zj)3}(2)butwehave{(zj)3}(1)=3(zj)4{(zj)}(2)=12(zj)5Res(φ,j)=limzj6(zj)5=6(jj)5=6(2i32)5=6(i3)5=6i93+φ(z)dz=2iπ6i93=2π.3.23.33=4π33+dx(1+x+x2)3=4π39
Answered by MJS last updated on 15/May/18
∫(dx/((x^2 +x+1)^3 ))=∫(dx/(((x+(1/2))^2 +(3/4))^3 ))=  =64∫(dx/(((2x+1)^2 ++3)^3 ))=            [u=2x+1 → dx=(du/2)]  =32∫(du/((u^2 +3)^3 ))            [∫(du/((au^2 +b)^n ))=(u/(2b(n−1)(au^2 +b)^(n−1) ))+((2n−3)/(2b(n−1)))∫(du/((au^2 +b)^(n−1) ))]       a=1; b=3; n=3  =32((u/(12(u^2 +3)^2 ))+(1/4)∫(du/((u^2 +3)^2 )))=       a=1; b=3; n=2  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+(1/6)∫(du/(u^2 +3))))=            [v=((u(√3))/3) → du=(√3)dv]  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+((√3)/(18))∫(dv/(v^2 +1))))=  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+((√3)/(18))arctan(v)))=  =32((u/(12(u^2 +3)^2 ))+(1/4)((u/(6(u^2 +3)))+((√3)/(18))arctan(((u(√3))/3))))=  =((8u)/(3(u^2 +3)^2 ))+((4u)/(3(u^2 +3)))+((4(√3))/9)arctan(((u(√3))/3))=  =((4u(u^2 +5))/(3(u^2 +3)^2 ))+((4(√3))/9)arctan(((u(√3))/3))=  =((4(2x+1)((2x+1)^2 +5))/(3((2x+1)^2 +3)^2 ))+((4(√3))/9)arctan(((√3)/3)(2x+1))=  =(((2x+1)(2x^2 +2x+3))/(6(x^2 +x+1)^2 ))+((4(√3))/9)arctan(((√3)/3)(2x+1))+C    ∫_(−∞) ^∞ (dx/((x^2 +x+1)^3 ))=((4(√3))/9)π
dx(x2+x+1)3=dx((x+12)2+34)3==64dx((2x+1)2++3)3=[u=2x+1dx=du2]=32du(u2+3)3[du(au2+b)n=u2b(n1)(au2+b)n1+2n32b(n1)du(au2+b)n1]a=1;b=3;n=3=32(u12(u2+3)2+14du(u2+3)2)=a=1;b=3;n=2=32(u12(u2+3)2+14(u6(u2+3)+16duu2+3))=[v=u33du=3dv]=32(u12(u2+3)2+14(u6(u2+3)+318dvv2+1))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(v)))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(u33)))==8u3(u2+3)2+4u3(u2+3)+439arctan(u33)==4u(u2+5)3(u2+3)2+439arctan(u33)==4(2x+1)((2x+1)2+5)3((2x+1)2+3)2+439arctan(33(2x+1))==(2x+1)(2x2+2x+3)6(x2+x+1)2+439arctan(33(2x+1))+Cdx(x2+x+1)3=439π

Leave a Reply

Your email address will not be published. Required fields are marked *