Question Number 35055 by math khazana by abdo last updated on 14/May/18
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$
Commented by math khazana by abdo last updated on 15/May/18
$${let}\:{put}\:{I}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$${I}\:=\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{{dx}}{\left\{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:\:+\frac{\mathrm{3}}{\mathrm{4}}\right\}^{\mathrm{3}} }?\:{changement} \\ $$$${x}+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{tant}\:{gibe} \\ $$$${I}\:=\:\int_{−\frac{\pi}{\mathrm{3}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{3}} \left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)^{\mathrm{3}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\:\mathrm{1}+{tan}^{\mathrm{2}} {t}\right){dt} \\ $$$$=\frac{\mathrm{4}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{3}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\int_{−\frac{\pi}{\mathrm{2}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{tan}^{\mathrm{2}} {t}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{4}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{3}} }\:\sqrt{\mathrm{3}}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{cos}^{\mathrm{4}} {tdt} \\ $$$$=\:\frac{\mathrm{4}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{3}} }\:\sqrt{\mathrm{3}}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{\left(\mathrm{1}+{cos}\left(\mathrm{2}{t}\right)\right)^{\mathrm{2}} }{\mathrm{4}}{dt} \\ $$$$=\:\frac{\mathrm{16}}{\mathrm{27}}\:\sqrt{\mathrm{3}}\:\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{1}+\mathrm{2}{cos}\left(\mathrm{2}{t}\right)\:\:+\frac{\mathrm{1}+{cos}\left(\mathrm{4}{t}\right)}{\mathrm{2}}\right){dt} \\ $$$$=\:\frac{\mathrm{8}\pi\sqrt{\mathrm{3}}}{\mathrm{27}}\:\:\:+\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{27}}\:=\:\frac{\mathrm{12}\pi\sqrt{\mathrm{3}}}{\mathrm{3}.\mathrm{9}}\:=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}} \\ $$$${I}\:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:. \\ $$
Commented by abdo imad last updated on 17/May/18
$${let}\:{introduce}\:{the}\:{complex}\:{function}\:\varphi\left({z}\right)=\:\frac{\mathrm{1}}{\left(\mathrm{1}+{z}+{z}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$$${the}\left[{poles}\:{of}\:\varphi\:{are}\:{j}={e}^{{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\:{and}\:\overset{−} {{j}}={e}^{−{i}\frac{\mathrm{2}\pi}{\mathrm{3}}} \:\left({triple}\:{poles}\right.\right. \\ $$$$\varphi\left({z}\right)=\:\:\frac{\mathrm{1}}{\left({z}−{j}\right)^{\mathrm{3}} \left({z}−\overset{−} {{j}}\right)^{\mathrm{3}} } \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{j}\right)\:{but}\: \\ $$$${Res}\left(\varphi,{j}\right)\:={lim}_{{z}\rightarrow{j}} \:\:\:\:\frac{\mathrm{1}}{\left(\mathrm{3}−\mathrm{1}\right)!}\left\{\:\left({z}−{j}\right)^{\mathrm{3}} \varphi\left({z}\right)\right\}^{\left(\mathrm{2}\right)} \\ $$$$={lim}_{{z}\rightarrow{j}} \:\frac{\mathrm{1}}{\mathrm{2}}\:\left\{\left({z}−\overset{−} {{j}}\right)^{−\mathrm{3}} \right\}^{\left(\mathrm{2}\right)} \:\:\:{but}\:{we}\:{have} \\ $$$$\left\{\left({z}−\overset{−} {{j}}\right)^{−\mathrm{3}} \right\}^{\left(\mathrm{1}\right)} =−\mathrm{3}\left({z}−\overset{−} {{j}}\right)^{−\mathrm{4}} \\ $$$$\left\{\left({z}−\overset{−} {{j}}\right)\right\}^{\left(\mathrm{2}\right)} =\:\mathrm{12}\left({z}−\overset{−} {{j}}\right)^{−\mathrm{5}} \\ $$$${Res}\left(\varphi,{j}\right)\:={lim}_{{z}\rightarrow{j}} \:\:\mathrm{6}\left({z}−\overset{−} {{j}}\right)^{−\mathrm{5}} =\mathrm{6}\left({j}−\overset{−} {{j}}\right)^{−\mathrm{5}} \\ $$$$=\mathrm{6}\left(\mathrm{2}{i}\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{−\mathrm{5}} =\frac{\mathrm{6}}{\left({i}\sqrt{\mathrm{3}}\right)^{\mathrm{5}} }\:=\:\frac{\mathrm{6}}{{i}\:\mathrm{9}\sqrt{\mathrm{3}}} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\:\frac{\mathrm{6}}{{i}\mathrm{9}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{2}\pi\:.\mathrm{3}.\mathrm{2}}{\mathrm{3}.\mathrm{3}\sqrt{\mathrm{3}}}\:=\:\frac{\mathrm{4}\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$$\bigstar\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} \right)^{\mathrm{3}} }\:=\:\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:\:\bigstar \\ $$$$ \\ $$
Answered by MJS last updated on 15/May/18
$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }=\int\frac{{dx}}{\left(\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{3}} }= \\ $$$$=\mathrm{64}\int\frac{{dx}}{\left(\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} ++\mathrm{3}\right)^{\mathrm{3}} }= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{u}=\mathrm{2}{x}+\mathrm{1}\:\rightarrow\:{dx}=\frac{{du}}{\mathrm{2}}\right] \\ $$$$=\mathrm{32}\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{3}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[\int\frac{{du}}{\left({au}^{\mathrm{2}} +{b}\right)^{{n}} }=\frac{{u}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)\left({au}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }+\frac{\mathrm{2}{n}−\mathrm{3}}{\mathrm{2}{b}\left({n}−\mathrm{1}\right)}\int\frac{{du}}{\left({au}^{\mathrm{2}} +{b}\right)^{{n}−\mathrm{1}} }\right] \\ $$$$\:\:\:\:\:{a}=\mathrm{1};\:{b}=\mathrm{3};\:{n}=\mathrm{3} \\ $$$$=\mathrm{32}\left(\frac{{u}}{\mathrm{12}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\int\frac{{du}}{\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }\right)= \\ $$$$\:\:\:\:\:{a}=\mathrm{1};\:{b}=\mathrm{3};\:{n}=\mathrm{2} \\ $$$$=\mathrm{32}\left(\frac{{u}}{\mathrm{12}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{u}}{\mathrm{6}\left({u}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{1}}{\mathrm{6}}\int\frac{{du}}{{u}^{\mathrm{2}} +\mathrm{3}}\right)\right)= \\ $$$$\:\:\:\:\:\:\:\:\:\:\left[{v}=\frac{{u}\sqrt{\mathrm{3}}}{\mathrm{3}}\:\rightarrow\:{du}=\sqrt{\mathrm{3}}{dv}\right] \\ $$$$=\mathrm{32}\left(\frac{{u}}{\mathrm{12}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{u}}{\mathrm{6}\left({u}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}\int\frac{{dv}}{{v}^{\mathrm{2}} +\mathrm{1}}\right)\right)= \\ $$$$=\mathrm{32}\left(\frac{{u}}{\mathrm{12}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{u}}{\mathrm{6}\left({u}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}\mathrm{arctan}\left({v}\right)\right)\right)= \\ $$$$=\mathrm{32}\left(\frac{{u}}{\mathrm{12}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{{u}}{\mathrm{6}\left({u}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\sqrt{\mathrm{3}}}{\mathrm{18}}\mathrm{arctan}\left(\frac{{u}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)\right)\right)= \\ $$$$=\frac{\mathrm{8}{u}}{\mathrm{3}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{4}{u}}{\mathrm{3}\left({u}^{\mathrm{2}} +\mathrm{3}\right)}+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\left(\frac{{u}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)= \\ $$$$=\frac{\mathrm{4}{u}\left({u}^{\mathrm{2}} +\mathrm{5}\right)}{\mathrm{3}\left({u}^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\left(\frac{{u}\sqrt{\mathrm{3}}}{\mathrm{3}}\right)= \\ $$$$=\frac{\mathrm{4}\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{5}\right)}{\mathrm{3}\left(\left(\mathrm{2}{x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)\right)= \\ $$$$=\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)}{\mathrm{6}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)\right)+{C} \\ $$$$ \\ $$$$\underset{−\infty} {\overset{\infty} {\int}}\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\pi \\ $$