calculate-dx-1-x-x-2-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35055 by math khazana by abdo last updated on 14/May/18 calculate∫−∞+∞dx(1+x+x2)3 Commented by math khazana by abdo last updated on 15/May/18 letputI=∫−∞+∞dx(1+x+x2)3I=∫−∞+∞dx{(x+12)2+34}3?changementx+12=32tantgibeI=∫−π3π21(34)3(1+tan2t)332(1+tan2t)dt=433332∫−π2π2dt(1+tan2t)2=43333∫0π2cos4tdt=43333∫0π2(1+cos(2t))24dt=16273∫0π2(1+2cos(2t)+1+cos(4t)2)dt=8π327+4π327=12π33.9=4π39I=4π39. Commented by abdo imad last updated on 17/May/18 letintroducethecomplexfunctionφ(z)=1(1+z+z2)3the[polesofφarej=ei2π3andj−=e−i2π3(triplepolesφ(z)=1(z−j)3(z−j−)3∫−∞+∞φ(z)dz=2iπRes(φ,j)butRes(φ,j)=limz→j1(3−1)!{(z−j)3φ(z)}(2)=limz→j12{(z−j−)−3}(2)butwehave{(z−j−)−3}(1)=−3(z−j−)−4{(z−j−)}(2)=12(z−j−)−5Res(φ,j)=limz→j6(z−j−)−5=6(j−j−)−5=6(2i32)−5=6(i3)5=6i93∫−∞+∞φ(z)dz=2iπ6i93=2π.3.23.33=4π33⇒★∫−∞+∞dx(1+x+x2)3=4π39★ Answered by MJS last updated on 15/May/18 ∫dx(x2+x+1)3=∫dx((x+12)2+34)3==64∫dx((2x+1)2++3)3=[u=2x+1→dx=du2]=32∫du(u2+3)3[∫du(au2+b)n=u2b(n−1)(au2+b)n−1+2n−32b(n−1)∫du(au2+b)n−1]a=1;b=3;n=3=32(u12(u2+3)2+14∫du(u2+3)2)=a=1;b=3;n=2=32(u12(u2+3)2+14(u6(u2+3)+16∫duu2+3))=[v=u33→du=3dv]=32(u12(u2+3)2+14(u6(u2+3)+318∫dvv2+1))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(v)))==32(u12(u2+3)2+14(u6(u2+3)+318arctan(u33)))==8u3(u2+3)2+4u3(u2+3)+439arctan(u33)==4u(u2+5)3(u2+3)2+439arctan(u33)==4(2x+1)((2x+1)2+5)3((2x+1)2+3)2+439arctan(33(2x+1))==(2x+1)(2x2+2x+3)6(x2+x+1)2+439arctan(33(2x+1))+C∫∞−∞dx(x2+x+1)3=439π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-v-x-ln-1-x-x-2-developp-f-at-integr-serie-Next Next post: 0-dx-1-x-18-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.