Menu Close

calculate-dx-x-1-2-x-




Question Number 63721 by mathmax by abdo last updated on 08/Jul/19
calculate ∫  (dx/( (√((x−1)(2−x)))))
calculatedx(x1)(2x)
Commented by Prithwish sen last updated on 08/Jul/19
put x−l = z^2    ⇒dx = 2zdz  ∫((2zdz)/(z(√(3−z^2  ))))  = 2∫(dz/( (√(((√(3)^2 )) −z^2 ))))
putxl=z2dx=2zdz2zdzz3z2=2dz(3)2z2
Commented by mathmax by abdo last updated on 08/Jul/19
let I =∫  (dx/( (√((x−1)(2−x)))))  we have (x−1)(2−x)=2x−x^2 −2 +x  −x^2  +3x−2 =−(x^2 −3x+2) =−(x^2 −2(3/2)x +(9/4) +2−(9/4))  =−{(x−(3/2))^2 −(1/4)} =(1/4)−(x−(3/2))^2  for that we use the changement  x−(3/2) =((sint)/2) ⇒I = ∫   ((costdt)/(2(1/2)(√(1−sin^2 t)))) = ∫   ((cost)/(cost))dt +c  =∫dt+c = t+c =arcsin(2x−3) +c .
letI=dx(x1)(2x)wehave(x1)(2x)=2xx22+xx2+3x2=(x23x+2)=(x2232x+94+294)={(x32)214}=14(x32)2forthatweusethechangementx32=sint2I=costdt2121sin2t=costcostdt+c=dt+c=t+c=arcsin(2x3)+c.
Answered by MJS last updated on 08/Jul/19
∫(dx/( (√((x−1)(2−x)))))=       [t=arccos (2x−3) → dx=−(√((x−1)(2−x)))dt]  =−∫dt=−t=−arccos (2x−3) +C
dx(x1)(2x)=[t=arccos(2x3)dx=(x1)(2x)dt]=dt=t=arccos(2x3)+C

Leave a Reply

Your email address will not be published. Required fields are marked *