Menu Close

calculate-dx-x-1-3-x-2-3x-2-2-find-the-value-of-2-dx-x-1-3-x-2-3x-2-




Question Number 56939 by maxmathsup by imad last updated on 26/Mar/19
calculate ∫    (dx/((x+1)^3 (x^2 −3x +2)))  2) find the value of ∫_2 ^(+∞)   (dx/((x+1)^3 (x^2 −3x+2)))
calculatedx(x+1)3(x23x+2)2)findthevalueof2+dx(x+1)3(x23x+2)
Commented by turbo msup by abdo last updated on 27/Mar/19
2)the question is find ∫_3 ^(+∞)  (dx/((x+1)^2 (x^2 −3x +2)))
2)thequestionisfind3+dx(x+1)2(x23x+2)
Commented by maxmathsup by imad last updated on 27/Mar/19
changement x+1=t give I =∫  (dt/(t^3 ( (t−1)^2 −3(t−1) +2)))  =∫    (dt/(t^3 (t^2 −2t +1−3t +3+2))) =∫    (dt/(t^3 ( t^2  −5t+6)))  let decopose  F(t)=(1/(t^3 (t^2 −5t +6)))     roots of t^2 −5t +6  Δ=25−24=1 ⇒t_1 =((5+1)/2) =3   and  t_2 =((5−1)/2) =2 ⇒  F(t)=(1/(t^3 (t−3)(t−2))) =(a/t) +(b/t^2 ) +(c/t^3 ) +(d/(t−3)) +(e/(t−2))  c=lim_(t→0) t^3  F(t)=(1/6)  d =lim_(t→3) (t−3)F(t) =(1/(27))  e =lim_(t→2) (t−2)F(t)=−(1/8) ⇒F(t)=(a/t) +(b/t^2 ) +(1/(6t^3 )) +(1/(27(t−3))) −(1/(8(t−2)))  lim_(t→+∞) tF(t)=0 =a +(1/(27)) −(1/8) =a+((8−27)/(27.8)) =a−((19)/(216)) ⇒a=((19)/(216)) ⇒  F(t)=((19)/(216t)) +(b/t^2 ) +(1/(6t^3 )) +(1/(27(t−3))) −(1/(8(t−2)))  F(1)=(1/2) =((19)/(216)) +b +(1/6) −(1/(54)) +(1/8) ⇒1 =((19)/(108)) +2b +(1/3) −(1/(27)) +(1/4)  =2b +((19)/(108)) +(7/(12)) −(1/(27)) ⇒2b =1−((19)/(108)) −(7/(12)) +(1/(27)) ⇒b=(1/2) −((19)/(216)) −(7/(24)) +(1/(54)) =b_0 ⇒  ∫F(t)dt =((19)/(216))ln∣t∣−(b_0 /t)  +(1/6) (1/(−2)) t^(−2)   +(1/(27))ln∣t−3∣−(1/8)ln∣t−2∣ +c  =((19)/(216))ln∣t∣ −(b_0 /t) −(1/(12t^2 )) +(1/(27))ln∣t−3∣ −(1/8)ln∣t−2∣ +c  =((19)/(216))ln∣x+1∣ −(b_0 /(x+1)) −(1/(12(x+1)^2 )) +(1/(27))ln∣x−2∣ −(1/8)ln∣x−1∣ +c =I .
changementx+1=tgiveI=dtt3((t1)23(t1)+2)=dtt3(t22t+13t+3+2)=dtt3(t25t+6)letdecoposeF(t)=1t3(t25t+6)rootsoft25t+6Δ=2524=1t1=5+12=3andt2=512=2F(t)=1t3(t3)(t2)=at+bt2+ct3+dt3+et2c=limt0t3F(t)=16d=limt3(t3)F(t)=127e=limt2(t2)F(t)=18F(t)=at+bt2+16t3+127(t3)18(t2)limt+tF(t)=0=a+12718=a+82727.8=a19216a=19216F(t)=19216t+bt2+16t3+127(t3)18(t2)F(1)=12=19216+b+16154+181=19108+2b+13127+14=2b+19108+7121272b=119108712+127b=1219216724+154=b0F(t)dt=19216lntb0t+1612t2+127lnt318lnt2+c=19216lntb0t112t2+127lnt318lnt2+c=19216lnx+1b0x+1112(x+1)2+127lnx218lnx1+c=I.
Answered by MJS last updated on 27/Mar/19
∫(dx/((x+1)^3 (x^2 −3x+2)))=∫(dx/((x−2)(x−1)(x+1)^3 ))=  =∫((1/(27(x−2)))−(1/(8(x−1)))+((19)/(216(x+1)))+(5/(36(x+1)^2 ))+(1/(6(x+1)^3 )))dx=  =(1/(27))ln ∣x−2∣ −(1/8)ln ∣x−1∣ +((19)/(216))ln ∣x+1∣ −(5/(36(x+1)))−(1/(12(x+1)^2 ))+C=  =(1/(27))ln ∣x−2∣ −(1/8)ln ∣x−1∣ +((19)/(216))ln ∣x+1∣ −((5x+8)/(36(x+1)^2 ))+C  I think the integral in [2; +∞[ doesn′t exist
dx(x+1)3(x23x+2)=dx(x2)(x1)(x+1)3==(127(x2)18(x1)+19216(x+1)+536(x+1)2+16(x+1)3)dx==127lnx218lnx1+19216lnx+1536(x+1)112(x+1)2+C==127lnx218lnx1+19216lnx+15x+836(x+1)2+CIthinktheintegralin[2;+[doesntexist
Commented by turbo msup by abdo last updated on 27/Mar/19
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *