Menu Close

calculate-dx-x-2-1-x-2-2-x-2-3-




Question Number 64150 by mathmax by abdo last updated on 14/Jul/19
calculate ∫_(−∞) ^(+∞)    (dx/((x^2 +1)(x^2 +2)(x^2 +3)))
calculate+dx(x2+1)(x2+2)(x2+3)
Commented by mathmax by abdo last updated on 14/Jul/19
residus method let f(z)=(1/((z^2 +1)(z^2  +2)(z^2  +3)))  we have f(z) =(1/((z−i)(z+i)(z−i(√2))(z+i(√2))(z−i(√3))(z+i(√3))))  so the poles of f are +^− i ,+^− i(√2)and +^− i(√3)   residus theorem give  ∫_(−∞) ^(+∞) f−z)dz =2iπ {Res(f,i)+Res(f,i(√2)) +Res(f,i(√3))}  Res(f,i) =lim_(z→i) (z−i)f(z) =(1/(2i(−1+2)(−1+3))) =(1/(4i))  Res(f,i(√2))=lim_(z→i(√2))   (z−i(√2))f(z) =(1/(2i(√2)(−2+1)(−2+3)))  =(1/(−2i(√2)))  Res(f,i(√3)) =lim_(z→i(√3))    (z−i(√3))f(z)=(1/(2i(√3)(−3+1)(−3+2)))  =(1/(4i(√3))) ⇒∫_(−∞) ^(+∞) f(z)dz =2iπ{(1/(4i)) −(1/(2i(√2))) +(1/(4i(√3)))}  =(π/2) −(π/( (√2))) +(π/(2(√3)))  ⇒ I =(π/2) −(π/( (√2))) +(π/( (√3))) .
residusmethodletf(z)=1(z2+1)(z2+2)(z2+3)wehavef(z)=1(zi)(z+i)(zi2)(z+i2)(zi3)(z+i3)sothepolesoffare+i,+i2and+i3residustheoremgive+fz)dz=2iπ{Res(f,i)+Res(f,i2)+Res(f,i3)}Res(f,i)=limzi(zi)f(z)=12i(1+2)(1+3)=14iRes(f,i2)=limzi2(zi2)f(z)=12i2(2+1)(2+3)=12i2Res(f,i3)=limzi3(zi3)f(z)=12i3(3+1)(3+2)=14i3+f(z)dz=2iπ{14i12i2+14i3}=π2π2+π23I=π2π2+π3.
Commented by mathmax by abdo last updated on 14/Jul/19
error of typo   I =(π/2)−(π/( (√2))) +(π/(2(√3))) .
erroroftypoI=π2π2+π23.
Answered by ajfour last updated on 14/Jul/19
let x^2 +2=t  (1/((t−1)t(t+1)))=((1/2)/(t−1))−(1/t)+((1/2)/(t+1))  I=(1/2)∫(dx/(x^2 +1))−∫(dx/(x^2 +2))+(1/2)∫(dx/(x^2 +3))     =(1/2)tan^(−1) x−(1/( (√2)))tan^(−1) (x/( (√2)))+(1/(2(√3)))tan^(−1) (x/( (√3)))+c    with limits     I=(π/2)−(π/( (√2)))+(π/(2(√3)))       =(((3−3(√2)+(√3))/6))π .
letx2+2=t1(t1)t(t+1)=1/2t11t+1/2t+1I=12dxx2+1dxx2+2+12dxx2+3=12tan1x12tan1x2+123tan1x3+cwithlimitsI=π2π2+π23=(332+36)π.
Commented by mathmax by abdo last updated on 14/Jul/19
thank you sir ajfour your answer is correct.
thankyousirajfouryouransweriscorrect.

Leave a Reply

Your email address will not be published. Required fields are marked *