Menu Close

calculate-dx-x-2-ix-1-2-i-1-




Question Number 110447 by mathmax by abdo last updated on 29/Aug/20
calculate ∫_(−∞) ^(+∞)  (dx/((x^2 −ix +1)^2 ))  (i=(√(−1)))
calculate+dx(x2ix+1)2(i=1)
Answered by mathmax by abdo last updated on 29/Aug/20
I =∫_(−∞) ^(+∞)  (dx/((x^2 −ix +1)^2 ))  let ϕ(z) =(1/((z^2 −iz +1)^2 )) poles of ϕ?  z^2 −iz +1 =0→Δ =(−i)^2 −4 =−5 ⇒z_1 =i+i(√5) and z_2 =i−i(√5)  ⇒ϕ(z) =(1/((z−z_1 )^2 (z−z_2 )^2 ))  residus tbeorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,z_1 ) and   Res(ϕ,z_1 ) =lim_(z→z_1  )    (1/((2−1)!)){(z−z_1 )^2 ϕ(z)}^((1))   =lim_(z→z_1 )     {(1/((z−z_2 )^2 ))}^((1))  =lim_(z→z_1 )   −((2(z−z_2 ))/((z−z_2 )^4 )) =lim_(z→z_1 )  ((−2)/((z−z_2 )^3 ))  =((−2)/((z_1 −z_2 )^3 )) =((−2)/((2i(√5))^3 )) =((−2)/(2^3 (−i)(5(√5)))) =(1/(20i(√5))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z) =2iπ.(1/(20i(√5))) =(π/(10(√5))) ⇒ I =(π/(10(√5)))
I=+dx(x2ix+1)2letφ(z)=1(z2iz+1)2polesofφ?z2iz+1=0Δ=(i)24=5z1=i+i5andz2=ii5φ(z)=1(zz1)2(zz2)2residustbeoremgive+φ(z)dz=2iπRes(φ,z1)andRes(φ,z1)=limzz11(21)!{(zz1)2φ(z)}(1)=limzz1{1(zz2)2}(1)=limzz12(zz2)(zz2)4=limzz12(zz2)3=2(z1z2)3=2(2i5)3=223(i)(55)=120i5+φ(z)=2iπ.120i5=π105I=π105

Leave a Reply

Your email address will not be published. Required fields are marked *