Menu Close

calculate-dx-x-2-x-1-3-




Question Number 146197 by mathmax by abdo last updated on 11/Jul/21
calculate ∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)^3 ))
calculate+dx(x2x+1)3
Answered by Olaf_Thorendsen last updated on 12/Jul/21
Ω = ∫_(−∞) ^(+∞) (dx/((x^2 −x+1)^3 ))  f(a) = ∫_(−∞) ^(+∞) (dx/(x^2 −x+a)), a>(1/4)     (1)  f(a) = ∫_(−∞) ^(+∞) (dx/((x−(1/2))^2 +a−(1/4)))  f(a) = (1/( (√(a−(1/4)))))[arctan(((x−(1/2))/( (√(a−(1/4))))))]_(−∞) ^(+∞)   f(a) = (π/( (√(a−(1/4))))) = π(a−(1/4))^(−1/2)      (2)  (1) : f′(a) = −∫_(−∞) ^(+∞) (dx/((x^2 −x+a)^2 ))  f′′(a) = 2∫_(−∞) ^(+∞) (dx/((x^2 −x+a)^3 ))  ⇒ Ω = (1/2)f′′(1)     (3)  (2) : f′(a) = −(π/2)(a−(1/4))^(−3/2)   f′′(a) = ((3π)/4)(a−(1/4))^(−5/2)   (3) : Ω = (1/2)×((3π)/4)(1−(1/4))^(−5/2)   Ω = ((4π)/(3(√3)))
Ω=+dx(x2x+1)3f(a)=+dxx2x+a,a>14(1)f(a)=+dx(x12)2+a14f(a)=1a14[arctan(x12a14)]+f(a)=πa14=π(a14)1/2(2)(1):f(a)=+dx(x2x+a)2f(a)=2+dx(x2x+a)3Ω=12f(1)(3)(2):f(a)=π2(a14)3/2f(a)=3π4(a14)5/2(3):Ω=12×3π4(114)5/2Ω=4π33
Answered by mathmax by abdo last updated on 12/Jul/21
Υ=∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)^3 )) we considere ϕ(z)=(1/((z^2 −z+1)^3 )) poles of ϕ  z^2 −z+1=0→Δ=−3 ⇒z_1 =((1+i(√3))/2)=e^((iπ)/3)  and z_2 =e^(−((iπ)/3))   ⇒ϕ(z)=(1/((z−e^((iπ)/3) )^3 (z−e^(−((iπ)/3)) )^3 ))  residus theorem  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπRes(ϕ,e^((iπ)/3) )  Res(ϕ,e^((iπ)/3) )=lim_(z→e^((iπ)/3) )   (1/((3−1)!)){(z−e^((iπ)/3) )^3  ϕ(z)}^((2))   =(1/2)lim_(z→e^((iπ)/3) )   {(z−e^(−((iπ)/3)) )^(−3) }^((2))   =(1/2)lim_(z→e^((iπ)/3) )      {−3(z−e^(−((iπ)/3)) )^(−4) }^((1))   =(1/2)lim_(z→e^((iπ)/3) )     12(z−e^(−((iπ)/3)) )^(−5)   =6(e^((iπ)/3) −e^(−((iπ)/3)) )^(−5)  =6(2i×((√3)/2))^(−5)  =(6/(i^5 ((√3))^5 ))=(6/(i9(√3))) (2/(3i(√3)))  ∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ×(2/(3i(√3))) =((4π)/(3(√3))) ⇒Υ=((4π)/(3(√3)))
Υ=+dx(x2x+1)3weconsidereφ(z)=1(z2z+1)3polesofφz2z+1=0Δ=3z1=1+i32=eiπ3andz2=eiπ3φ(z)=1(zeiπ3)3(zeiπ3)3residustheorem+φ(z)dz=2iπRes(φ,eiπ3)Res(φ,eiπ3)=limzeiπ31(31)!{(zeiπ3)3φ(z)}(2)=12limzeiπ3{(zeiπ3)3}(2)=12limzeiπ3{3(zeiπ3)4}(1)=12limzeiπ312(zeiπ3)5=6(eiπ3eiπ3)5=6(2i×32)5=6i5(3)5=6i9323i3+φ(z)dz=2iπ×23i3=4π33Υ=4π33

Leave a Reply

Your email address will not be published. Required fields are marked *