calculate-dx-x-2-x-1-3- Tinku Tara June 4, 2023 Relation and Functions 0 Comments FacebookTweetPin Question Number 146197 by mathmax by abdo last updated on 11/Jul/21 calculate∫−∞+∞dx(x2−x+1)3 Answered by Olaf_Thorendsen last updated on 12/Jul/21 Ω=∫−∞+∞dx(x2−x+1)3f(a)=∫−∞+∞dxx2−x+a,a>14(1)f(a)=∫−∞+∞dx(x−12)2+a−14f(a)=1a−14[arctan(x−12a−14)]−∞+∞f(a)=πa−14=π(a−14)−1/2(2)(1):f′(a)=−∫−∞+∞dx(x2−x+a)2f″(a)=2∫−∞+∞dx(x2−x+a)3⇒Ω=12f″(1)(3)(2):f′(a)=−π2(a−14)−3/2f″(a)=3π4(a−14)−5/2(3):Ω=12×3π4(1−14)−5/2Ω=4π33 Answered by mathmax by abdo last updated on 12/Jul/21 Υ=∫−∞+∞dx(x2−x+1)3weconsidereφ(z)=1(z2−z+1)3polesofφz2−z+1=0→Δ=−3⇒z1=1+i32=eiπ3andz2=e−iπ3⇒φ(z)=1(z−eiπ3)3(z−e−iπ3)3residustheorem∫−∞+∞φ(z)dz=2iπRes(φ,eiπ3)Res(φ,eiπ3)=limz→eiπ31(3−1)!{(z−eiπ3)3φ(z)}(2)=12limz→eiπ3{(z−e−iπ3)−3}(2)=12limz→eiπ3{−3(z−e−iπ3)−4}(1)=12limz→eiπ312(z−e−iπ3)−5=6(eiπ3−e−iπ3)−5=6(2i×32)−5=6i5(3)5=6i9323i3∫−∞+∞φ(z)dz=2iπ×23i3=4π33⇒Υ=4π33 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-n-1-1-n-3-5-n-Next Next post: lnx-x-1-dx-La-primitive- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.