calculate-dx-x-2-x-1-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65129 by turbo msup by abdo last updated on 25/Jul/19 calculate∫−∞+∞dx(x2+x+1)3 Commented by mathmax by abdo last updated on 26/Jul/19 letA=∫−∞+∞dx(x2+x+1)3letturntomagicalnumberiwehavex2+x+1=(x+12)2+34andchang.x+12=32tgiveA=∫−∞+∞1(34)3(t2+1)332dt=433332∫−∞+∞dt(t2+1)3=32327∫−∞+∞dt(t2+1)3letφ(z)=1(z2+1)3⇒φ(z)=1(z−i)3(z+i)3thepolesofφare+−i(triples)residustheoremgive∫−∞+∞φ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(3−1)!{(z−i)3φ(z)}(2)=limz→i12{(z+i)−3}(2)=limz→i12{−3(z+i)−4}(1)=limz→i6(z+i)−5=6(2i)−5=6(2i)5=625i=632i=316i⇒∫−∞+∞φ(z)dz=2iπ316i=3π8⇒A=323273π8=3π3.8.43.9.8A=4π39. Answered by MJS last updated on 29/Jul/19 ∫dx(x2+x+1)3=Ostrogradski′sMethod∫p(x)q(x)=p1(x)q1(x)+∫p2(x)q2(x)p(x)=1q(x)=(x2+x+1)3q1(x)=(x2+x+1)2q2(x)=x2+x+1p1(x)=(2x+1)(2x2+2x+3)6p2=23=(2x+1)(2x2+2x+3)6(x2+x+1)2+23∫dxx2+x+1==(2x+1)(2x2+2x+3)6(x2+x+1)2+439arctan(33(2x+1))+C∫+∞−∞dx(x2+x+1)3=439π Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-130658Next Next post: calculate-0-x-2-3-x-4-x-2-2-2-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.