Menu Close

calculate-dx-x-2-x-1-3-




Question Number 65129 by turbo msup by abdo last updated on 25/Jul/19
calculate ∫_(−∞) ^(+∞)   (dx/((x^2  +x+1)^3 ))
calculate+dx(x2+x+1)3
Commented by mathmax by abdo last updated on 26/Jul/19
let A =∫_(−∞) ^(+∞)   (dx/((x^2  +x +1)^3 ))   let turn to magical number i  we have x^2  +x+1 =(x+(1/2))^2  +(3/4)  and chang. x+(1/2) =((√3)/2)t give  A = ∫_(−∞) ^(+∞)    (1/(((3/4))^3 (t^2  +1)^3 )) ((√3)/2) dt =(4^3 /3^3 ) ((√3)/2) ∫_(−∞) ^(+∞)    (dt/((t^2 +1)^3 ))  =((32(√3))/(27)) ∫_(−∞) ^(+∞)   (dt/((t^2  +1)^3 ))  let ϕ(z) =(1/((z^2  +1)^3 )) ⇒ϕ(z) =(1/((z−i)^3 (z+i)^3 ))  the poles of ϕ are +^− i (triples)  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i) =lim_(z→i)  (1/((3−1)!)){(z−i)^3 ϕ(z)}^((2))   =lim_(z→i)    (1/2){(z+i)^(−3) }^((2))  =lim_(z→i)  (1/2){−3(z+i)^(−4) }^((1))   =lim_(z→i)   6(z+i)^(−5)   =6(2i)^(−5)  =(6/((2i)^5 )) =(6/(2^5 i)) =(6/(32i)) =(3/(16i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (3/(16i)) =((3π)/8) ⇒ A =((32(√3))/(27)) ((3π)/8)  =((3π(√3) .8.4)/(3.9 .8))  A =((4π(√3))/9) .
letA=+dx(x2+x+1)3letturntomagicalnumberiwehavex2+x+1=(x+12)2+34andchang.x+12=32tgiveA=+1(34)3(t2+1)332dt=433332+dt(t2+1)3=32327+dt(t2+1)3letφ(z)=1(z2+1)3φ(z)=1(zi)3(z+i)3thepolesofφare+i(triples)residustheoremgive+φ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(31)!{(zi)3φ(z)}(2)=limzi12{(z+i)3}(2)=limzi12{3(z+i)4}(1)=limzi6(z+i)5=6(2i)5=6(2i)5=625i=632i=316i+φ(z)dz=2iπ316i=3π8A=323273π8=3π3.8.43.9.8A=4π39.
Answered by MJS last updated on 29/Jul/19
∫(dx/((x^2 +x+1)^3 ))=       Ostrogradski′s Method       ∫((p(x))/(q(x)))=((p_1 (x))/(q_1 (x)))+∫((p_2 (x))/(q_2 (x)))       p(x)=1     q(x)=(x^2 +x+1)^3        q_1 (x)=(x^2 +x+1)^2      q_2 (x)=x^2 +x+1       p_1 (x)=(((2x+1)(2x^2 +2x+3))/6)     p_2 =(2/3)  =(((2x+1)(2x^2 +2x+3))/(6(x^2 +x+1)^2 ))+(2/3)∫(dx/(x^2 +x+1))=  =(((2x+1)(2x^2 +2x+3))/(6(x^2 +x+1)^2 ))+((4(√3))/9)arctan (((√3)/3)(2x+1)) +C  ∫_(−∞) ^(+∞) (dx/((x^2 +x+1)^3 ))=((4(√3))/9)π
dx(x2+x+1)3=OstrogradskisMethodp(x)q(x)=p1(x)q1(x)+p2(x)q2(x)p(x)=1q(x)=(x2+x+1)3q1(x)=(x2+x+1)2q2(x)=x2+x+1p1(x)=(2x+1)(2x2+2x+3)6p2=23=(2x+1)(2x2+2x+3)6(x2+x+1)2+23dxx2+x+1==(2x+1)(2x2+2x+3)6(x2+x+1)2+439arctan(33(2x+1))+C+dx(x2+x+1)3=439π

Leave a Reply

Your email address will not be published. Required fields are marked *