Question Number 65129 by turbo msup by abdo last updated on 25/Jul/19
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{\mathrm{3}} } \\ $$
Commented by mathmax by abdo last updated on 26/Jul/19
$${let}\:{A}\:=\int_{−\infty} ^{+\infty} \:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}\:+\mathrm{1}\right)^{\mathrm{3}} }\:\:\:{let}\:{turn}\:{to}\:{magical}\:{number}\:{i} \\ $$$${we}\:{have}\:{x}^{\mathrm{2}} \:+{x}+\mathrm{1}\:=\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \:+\frac{\mathrm{3}}{\mathrm{4}}\:\:{and}\:{chang}.\:{x}+\frac{\mathrm{1}}{\mathrm{2}}\:=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\:{give} \\ $$$${A}\:=\:\int_{−\infty} ^{+\infty} \:\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{3}} \left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:{dt}\:=\frac{\mathrm{4}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{3}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dt}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} } \\ $$$$=\frac{\mathrm{32}\sqrt{\mathrm{3}}}{\mathrm{27}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{dt}}{\left({t}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:\:{let}\:\varphi\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} \:+\mathrm{1}\right)^{\mathrm{3}} }\:\Rightarrow\varphi\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−{i}\right)^{\mathrm{3}} \left({z}+{i}\right)^{\mathrm{3}} } \\ $$$${the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}{i}\:\left({triples}\right)\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)\:={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\left(\mathrm{3}−\mathrm{1}\right)!}\left\{\left({z}−{i}\right)^{\mathrm{3}} \varphi\left({z}\right)\right\}^{\left(\mathrm{2}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\:\frac{\mathrm{1}}{\mathrm{2}}\left\{\left({z}+{i}\right)^{−\mathrm{3}} \right\}^{\left(\mathrm{2}\right)} \:={lim}_{{z}\rightarrow{i}} \:\frac{\mathrm{1}}{\mathrm{2}}\left\{−\mathrm{3}\left({z}+{i}\right)^{−\mathrm{4}} \right\}^{\left(\mathrm{1}\right)} \\ $$$$={lim}_{{z}\rightarrow{i}} \:\:\mathrm{6}\left({z}+{i}\right)^{−\mathrm{5}} \:\:=\mathrm{6}\left(\mathrm{2}{i}\right)^{−\mathrm{5}} \:=\frac{\mathrm{6}}{\left(\mathrm{2}{i}\right)^{\mathrm{5}} }\:=\frac{\mathrm{6}}{\mathrm{2}^{\mathrm{5}} {i}}\:=\frac{\mathrm{6}}{\mathrm{32}{i}}\:=\frac{\mathrm{3}}{\mathrm{16}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{\mathrm{3}}{\mathrm{16}{i}}\:=\frac{\mathrm{3}\pi}{\mathrm{8}}\:\Rightarrow\:{A}\:=\frac{\mathrm{32}\sqrt{\mathrm{3}}}{\mathrm{27}}\:\frac{\mathrm{3}\pi}{\mathrm{8}}\:\:=\frac{\mathrm{3}\pi\sqrt{\mathrm{3}}\:.\mathrm{8}.\mathrm{4}}{\mathrm{3}.\mathrm{9}\:.\mathrm{8}} \\ $$$${A}\:=\frac{\mathrm{4}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}\:. \\ $$$$ \\ $$
Answered by MJS last updated on 29/Jul/19
$$\int\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }= \\ $$$$\:\:\:\:\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method} \\ $$$$\:\:\:\:\:\int\frac{{p}\left({x}\right)}{{q}\left({x}\right)}=\frac{{p}_{\mathrm{1}} \left({x}\right)}{{q}_{\mathrm{1}} \left({x}\right)}+\int\frac{{p}_{\mathrm{2}} \left({x}\right)}{{q}_{\mathrm{2}} \left({x}\right)} \\ $$$$\:\:\:\:\:{p}\left({x}\right)=\mathrm{1}\:\:\:\:\:{q}\left({x}\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} \\ $$$$\:\:\:\:\:{q}_{\mathrm{1}} \left({x}\right)=\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} \:\:\:\:\:{q}_{\mathrm{2}} \left({x}\right)={x}^{\mathrm{2}} +{x}+\mathrm{1} \\ $$$$\:\:\:\:\:{p}_{\mathrm{1}} \left({x}\right)=\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)}{\mathrm{6}}\:\:\:\:\:{p}_{\mathrm{2}} =\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$=\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)}{\mathrm{6}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{dx}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}= \\ $$$$=\frac{\left(\mathrm{2}{x}+\mathrm{1}\right)\left(\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\right)}{\mathrm{6}\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)\right)\:+{C} \\ $$$$\underset{−\infty} {\overset{+\infty} {\int}}\frac{{dx}}{\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{3}} }=\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\pi \\ $$