Menu Close

calculate-dx-x-2-x-1-n-with-n-gt-1-




Question Number 31107 by abdo imad last updated on 02/Mar/18
calculate ∫_(−∞) ^(+∞)       (dx/((x^2  +x+1)^n ))  with n>1.
calculate+dx(x2+x+1)nwithn>1.
Commented by abdo imad last updated on 06/Mar/18
let put A_n = ∫_(−∞) ^(+∞)     (dx/((x^2  +x+1)^n ))  with n≥2 we have  x^2  +x+1=x^2  +2x(1/2) +(1/4) +(3/4)=(x+(1/2))^2 +(3/4) the ch.  x+(1/2)=((√3)/2)t ⇒  I_n = ∫_(−∞) ^(+∞)      (1/(((3/4)(1+t^2 ))^n )) ((√3)/2)dt  =((4/3))^n ((√3)/2) ∫_(−∞) ^(+∞)     (dt/((1+t^2 )^n ))=(√3)((4/3))^n  ∫_0 ^∞    (dt/((1+t^2 )^n )) but  we have proved that ∫_0 ^∞   (dt/((1+t^2 )^n ))=π (((2n−2)!)/(2^(2n−1) ((n−1)!)^2 )) ⇒
letputAn=+dx(x2+x+1)nwithn2wehavex2+x+1=x2+2x12+14+34=(x+12)2+34thech.x+12=32tIn=+1(34(1+t2))n32dt=(43)n32+dt(1+t2)n=3(43)n0dt(1+t2)nbutwehaveprovedthat0dt(1+t2)n=π(2n2)!22n1((n1)!)2
Commented by abdo imad last updated on 06/Mar/18
⇒  A_n =π(√3) ((4/3))^n  (((2n−2)!)/(2^(2n−1) ((n−1)!)^2 )) .
An=π3(43)n(2n2)!22n1((n1)!)2.

Leave a Reply

Your email address will not be published. Required fields are marked *