Menu Close

calculate-dx-x-2-x-1-n-with-n-gt-1-




Question Number 31107 by abdo imad last updated on 02/Mar/18
calculate ∫_(−∞) ^(+∞)       (dx/((x^2  +x+1)^n ))  with n>1.
$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}>\mathrm{1}. \\ $$
Commented by abdo imad last updated on 06/Mar/18
let put A_n = ∫_(−∞) ^(+∞)     (dx/((x^2  +x+1)^n ))  with n≥2 we have  x^2  +x+1=x^2  +2x(1/2) +(1/4) +(3/4)=(x+(1/2))^2 +(3/4) the ch.  x+(1/2)=((√3)/2)t ⇒  I_n = ∫_(−∞) ^(+∞)      (1/(((3/4)(1+t^2 ))^n )) ((√3)/2)dt  =((4/3))^n ((√3)/2) ∫_(−∞) ^(+∞)     (dt/((1+t^2 )^n ))=(√3)((4/3))^n  ∫_0 ^∞    (dt/((1+t^2 )^n )) but  we have proved that ∫_0 ^∞   (dt/((1+t^2 )^n ))=π (((2n−2)!)/(2^(2n−1) ((n−1)!)^2 )) ⇒
$${let}\:{put}\:{A}_{{n}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} \:+{x}+\mathrm{1}\right)^{{n}} }\:\:{with}\:{n}\geqslant\mathrm{2}\:{we}\:{have} \\ $$$${x}^{\mathrm{2}} \:+{x}+\mathrm{1}={x}^{\mathrm{2}} \:+\mathrm{2}{x}\frac{\mathrm{1}}{\mathrm{2}}\:+\frac{\mathrm{1}}{\mathrm{4}}\:+\frac{\mathrm{3}}{\mathrm{4}}=\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}\:{the}\:{ch}. \\ $$$${x}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{t}\:\Rightarrow\:\:{I}_{{n}} =\:\int_{−\infty} ^{+\infty} \:\:\:\:\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{4}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right)^{{n}} }\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{dt} \\ $$$$=\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{{n}} \frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\int_{−\infty} ^{+\infty} \:\:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }=\sqrt{\mathrm{3}}\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{{n}} \:\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }\:{but} \\ $$$${we}\:{have}\:{proved}\:{that}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)^{{n}} }=\pi\:\frac{\left(\mathrm{2}{n}−\mathrm{2}\right)!}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \left(\left({n}−\mathrm{1}\right)!\right)^{\mathrm{2}} }\:\Rightarrow \\ $$
Commented by abdo imad last updated on 06/Mar/18
⇒  A_n =π(√3) ((4/3))^n  (((2n−2)!)/(2^(2n−1) ((n−1)!)^2 )) .
$$\Rightarrow\:\:{A}_{{n}} =\pi\sqrt{\mathrm{3}}\:\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{{n}} \:\frac{\left(\mathrm{2}{n}−\mathrm{2}\right)!}{\mathrm{2}^{\mathrm{2}{n}−\mathrm{1}} \left(\left({n}−\mathrm{1}\right)!\right)^{\mathrm{2}} }\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *