Menu Close

calculate-dx-x-2-x-1-x-2-3-2-




Question Number 103974 by abdomsup last updated on 18/Jul/20
calculate  ∫_(−∞) ^(+∞)    (dx/((x^2 −x+1)(x^2 +3)^2 ))
calculate+dx(x2x+1)(x2+3)2
Answered by OlafThorendsen last updated on 18/Jul/20
R(x) = (1/((x^2 −x+1)(x^2 +3)^2 ))  R(x) = ((x−2)/(7(x^2 +3)^2 ))+((5x−3)/(49(x^2 +3)))−((5x−8)/(x^2 −x+1))  ∫_(−∞) ^(+∞) R(x)dx =  −(2/7)∫_(−∞) ^(+∞) (dx/((x^2 +3)^2 )) (I)  −(3/(49))∫_(−∞) ^(+∞) (dx/(x^2 +3)) (J)  −∫_(−∞) ^(+∞) ((5x−8)/(x^2 −x+1)) (K)  (we don′t keep odd functions)  I = −(2/7)[(x/(6(x^2 +3)))+(1/(6(√3)))arctan(x/( (√3)))]_(−∞) ^(+∞)   I = −(π/(21(√3)))  J = −(3/(49))[(1/( (√3)))arctan(x/( (√3)))]_(−∞) ^(+∞)   J = −((3π)/(49(√3)))  K = −[((11)/( (√3)))arctan((1/( (√3)))−((2x)/( (√3))))+(5/2)ln(x^2 −x+1)]_(−∞) ^(+∞)   K = ((11π)/( (√3)))  ∫_(−∞) ^(+∞) R(x)dx = I+J+K  = −(π/(21(√3)))−((3π)/(49(√3)))+((11π)/( (√3)))  = ((1601π)/(147(√3)))  sorry, i′m not sure of my result.
R(x)=1(x2x+1)(x2+3)2R(x)=x27(x2+3)2+5x349(x2+3)5x8x2x+1+R(x)dx=27+dx(x2+3)2(I)349+dxx2+3(J)+5x8x2x+1(K)(wedontkeepoddfunctions)I=27[x6(x2+3)+163arctanx3]+I=π213J=349[13arctanx3]+J=3π493K=[113arctan(132x3)+52ln(x2x+1)]+K=11π3+R(x)dx=I+J+K=π2133π493+11π3=1601π1473sorry,imnotsureofmyresult.
Commented by mathmax by abdo last updated on 19/Jul/20
nevermind you do a work thanks sir.
nevermindyoudoaworkthankssir.
Answered by mathmax by abdo last updated on 19/Jul/20
I =∫_(−∞) ^(+∞)  (dx/((x^2 −x+1)(x^2  +3)^2 ))  let ϕ(z) =(1/((z^2 −z +1)(z^2  +3)^2 ))  poles of ϕ  z^2 −z+1 =0→Δ =−3 ⇒z_1 =((1+i(√3))/2) =e^((iπ)/3)  and z_2 =((1−i(√3))/2) =e^(−((iπ)/3))   ⇒ϕ(z)  =(1/((z−e^((iπ)/3) )(z−e^(−((iπ)/3)) )(z−i(√3))^2 (z+i(√3))^2 ))  rwsidus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ ,e^((iπ)/3) ) +Res(ϕ,i(√3))}  Res(ϕ ,e^((iπ)/3) ) =lim_(z→e^((iπ)/3) )    (z−e^(i(π/3)) )ϕ(z) =  (1/(2isin((π/3))(e^((2iπ)/3)  +3)^2 )) =(1/(2i((√3)/2)(e^((2iπ)/3)  +3)^2 ))  Res(ϕ,i(√3)) =lim_(z→i(√3))    (1/((2−1)!)){(z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3))    {(1/((z^2 −z+1)(z+i(√3))^2 ))}^((1))   =lim_(z→i(√3))    −(((2z−1)(z+i(√3))^2  +2(z+i(√3))(z^2 −z+1))/((z^2 −z+1)^2 (z+i(√3))^4 ))  =lim_(z→i(√3))    −(((2z−1)/((z^2 −z+1)^2 (z+i(√3))^2 )) +(2/((z^2 −z+1)(z+i(√3))^3 )))  =−{((2i(√3)−1)/((−3−i(√3)+1)^2 (2i(√3))^2 )) +(2/((−3−i(√3)+1)(2i(√3))^3 ))}  =−{((2i(√3)−1)/((2+i(√3))^2 (−12))) +(2/((−2−i(√3))(−24i)))} ....be continued...
I=+dx(x2x+1)(x2+3)2letφ(z)=1(z2z+1)(z2+3)2polesofφz2z+1=0Δ=3z1=1+i32=eiπ3andz2=1i32=eiπ3φ(z)=1(zeiπ3)(zeiπ3)(zi3)2(z+i3)2rwsidustheoremgive+φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,i3)}Res(φ,eiπ3)=limzeiπ3(zeiπ3)φ(z)=12isin(π3)(e2iπ3+3)2=12i32(e2iπ3+3)2Res(φ,i3)=limzi31(21)!{(zi3)2φ(z)}(1)=limzi3{1(z2z+1)(z+i3)2}(1)=limzi3(2z1)(z+i3)2+2(z+i3)(z2z+1)(z2z+1)2(z+i3)4=limzi3(2z1(z2z+1)2(z+i3)2+2(z2z+1)(z+i3)3)={2i31(3i3+1)2(2i3)2+2(3i3+1)(2i3)3}={2i31(2+i3)2(12)+2(2i3)(24i)}.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *