calculate-dx-x-2-x-1-x-2-3-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 103974 by abdomsup last updated on 18/Jul/20 calculate∫−∞+∞dx(x2−x+1)(x2+3)2 Answered by OlafThorendsen last updated on 18/Jul/20 R(x)=1(x2−x+1)(x2+3)2R(x)=x−27(x2+3)2+5x−349(x2+3)−5x−8x2−x+1∫−∞+∞R(x)dx=−27∫−∞+∞dx(x2+3)2(I)−349∫−∞+∞dxx2+3(J)−∫−∞+∞5x−8x2−x+1(K)(wedon′tkeepoddfunctions)I=−27[x6(x2+3)+163arctanx3]−∞+∞I=−π213J=−349[13arctanx3]−∞+∞J=−3π493K=−[113arctan(13−2x3)+52ln(x2−x+1)]−∞+∞K=11π3∫−∞+∞R(x)dx=I+J+K=−π213−3π493+11π3=1601π1473sorry,i′mnotsureofmyresult. Commented by mathmax by abdo last updated on 19/Jul/20 nevermindyoudoaworkthankssir. Answered by mathmax by abdo last updated on 19/Jul/20 I=∫−∞+∞dx(x2−x+1)(x2+3)2letφ(z)=1(z2−z+1)(z2+3)2polesofφz2−z+1=0→Δ=−3⇒z1=1+i32=eiπ3andz2=1−i32=e−iπ3⇒φ(z)=1(z−eiπ3)(z−e−iπ3)(z−i3)2(z+i3)2rwsidustheoremgive∫−∞+∞φ(z)dz=2iπ{Res(φ,eiπ3)+Res(φ,i3)}Res(φ,eiπ3)=limz→eiπ3(z−eiπ3)φ(z)=12isin(π3)(e2iπ3+3)2=12i32(e2iπ3+3)2Res(φ,i3)=limz→i31(2−1)!{(z−i3)2φ(z)}(1)=limz→i3{1(z2−z+1)(z+i3)2}(1)=limz→i3−(2z−1)(z+i3)2+2(z+i3)(z2−z+1)(z2−z+1)2(z+i3)4=limz→i3−(2z−1(z2−z+1)2(z+i3)2+2(z2−z+1)(z+i3)3)=−{2i3−1(−3−i3+1)2(2i3)2+2(−3−i3+1)(2i3)3}=−{2i3−1(2+i3)2(−12)+2(−2−i3)(−24i)}….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Evaluate-if-the-limit-exist-lim-n-3-n-2-n-1-3-n-2-2-2n-1-Next Next post: show-right-and-left-sid-limitation-of-lim-x-0-ln-b-x-ax- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.