Menu Close

calculate-dz-z-3-8-in-those-cases-1-z-C-z-1-2-z-C-z-3-




Question Number 37303 by math khazana by abdo last updated on 11/Jun/18
calculate  ∫_γ       (dz/(z^3  +8)) in those cases  1) γ ={z∈C / ∣z∣ =1}  2) γ ={z∈C / ∣z∣ =3}
calculateγdzz3+8inthosecases1)γ={zC/z=1}2)γ={zC/z=3}
Commented by prof Abdo imad last updated on 15/Jun/18
1) let ϕ(z) = (1/(z^3  +8))  ϕ(z)= (1/((z+2)(z^2  −2z +4))) poles of ϕ?  z^2  −2z +4 =0   Δ^′  =1−4 =−3=(i(√3))^2   z_1 =1+i(√3)   and z_2 =1−i(√3) .but  ∣−2∣=2>1  also ∣z_1 ∣=2 >1  ,∣z_2 ∣=2>1 ⇒  ∫_γ ϕ(z)dz =0  2) all poles of ϕ are in the interior lf γ  so  ∫_γ ϕ(z)dz =2iπ{ Res(ϕ,−2)+Res(ϕ,z_1 )+Res(ϕ,z_2 )}  ϕ(z) = (1/((z+2)(z−z_1 )(z−z_2 )))  Res(ϕ,−2)= (1/(4 +4+4)) =(1/(12))  Res(ϕ,z_1 ) = (1/((z_1  +2)(z_1 −z_2 )))  = (1/((1+i(√3) +2)(2i(√3)))) = (1/(2i(√3)(3+i(√3))))  Res(ϕ,z_2 ) = (1/((z_2  +2)(z_2 −z_1 )))  = (1/((1−i(√3) +2)(−2i(√3)))) = (1/(−2i(√3)(3−i(√3))))  ∫_γ ϕ(z)dz =2iπ{ (1/(12))  + (1/(2i(√3)(3+i(√3))))−(1/(2i(√3)(3−i(√3))))}  =2iπ{ (1/(12))  +(1/(2i(√3)))( ((3−i(√3)−3−i(√3))/(12)))}  =2iπ{ (1/(12)) −(1/(12))} =0
1)letφ(z)=1z3+8φ(z)=1(z+2)(z22z+4)polesofφ?z22z+4=0Δ=14=3=(i3)2z1=1+i3andz2=1i3.but2∣=2>1alsoz1∣=2>1,z2∣=2>1γφ(z)dz=02)allpolesofφareintheinteriorlfγsoγφ(z)dz=2iπ{Res(φ,2)+Res(φ,z1)+Res(φ,z2)}φ(z)=1(z+2)(zz1)(zz2)Res(φ,2)=14+4+4=112Res(φ,z1)=1(z1+2)(z1z2)=1(1+i3+2)(2i3)=12i3(3+i3)Res(φ,z2)=1(z2+2)(z2z1)=1(1i3+2)(2i3)=12i3(3i3)γφ(z)dz=2iπ{112+12i3(3+i3)12i3(3i3)}=2iπ{112+12i3(3i33i312)}=2iπ{112112}=0

Leave a Reply

Your email address will not be published. Required fields are marked *