Menu Close

calculate-e-ix-x-i-x-i-x-2-3-dx-




Question Number 37306 by math khazana by abdo last updated on 11/Jun/18
calculate ∫_(−∞) ^(+∞)    e^(ix)    ((x−i)/((x+i)(x^2  +3))) dx .
calculate+eixxi(x+i)(x2+3)dx.
Commented by prof Abdo imad last updated on 15/Jun/18
let  ϕ(z) = e^(iz)    ((z−i)/((z+i)(z^2  +3)))  the poles of  ϕ are  −i ,i(√3),−i(√3)  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i(√3))  we have ϕ(z)=(((z−i)e^(iz) )/((z+i)(z−i(√3))(z+i(√3))))  Res(ϕ,i(√3)) = (((i(√3)−i)e^(i(i(√3))) )/((i(√3) +i)(2i(√3))))  = ((i((√3)−1)e^(−(√3)) )/(−2(√3)(1+(√3))))  = ((i(1−(√3))e^(−(√3)) )/(2(√3)  +6))  ⇒  ∫_(−∞) ^(+∞)   ϕ(z)dz = 2iπ  ((i(1−(√3))e^(−(√3)) )/(2(√3) +6))  =((π((√3)−1)e^(−(√3)) )/(3+(√3)))  ⇒  I  = ((π((√3)−1)e^(−(√3)) )/(3+(√3)))  .
letφ(z)=eizzi(z+i)(z2+3)thepolesofφarei,i3,i3+φ(z)dz=2iπRes(φ,i3)wehaveφ(z)=(zi)eiz(z+i)(zi3)(z+i3)Res(φ,i3)=(i3i)ei(i3)(i3+i)(2i3)=i(31)e323(1+3)=i(13)e323+6+φ(z)dz=2iπi(13)e323+6=π(31)e33+3I=π(31)e33+3.

Leave a Reply

Your email address will not be published. Required fields are marked *