Menu Close

calculate-f-0-1-ln-x-4-4-dx-with-gt-0-then-find-the-value-of-0-1-ln-1-x-4-dx-




Question Number 128954 by mathmax by abdo last updated on 11/Jan/21
calculate  f(λ) =∫_0 ^1 ln(x^4  +λ^4 )dx   with λ>0 then find the value of  ∫_0 ^1 ln(1+x^4 )dx
calculatef(λ)=01ln(x4+λ4)dxwithλ>0thenfindthevalueof01ln(1+x4)dx
Answered by Lordose last updated on 16/Jan/21
    f(λ) = ∫_0 ^( 1) ln(x^4 +λ^4 )dx = ∫_0 ^( 1) ln(λ^4 (((x/λ))^4 +1))dx  f(λ) = 4∫_0 ^( 1) ln(λ)dx + ∫_0 ^( 1) ln(1+(x^4 /λ^4 ))dx  f(λ) = 4ln(λ) + Σ_(n=1) ^∞ (((−1)^(n−1) )/n)∫_0 ^( 1) ((x/λ))^(4n) dx   f(λ) = 4ln(λ) + Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(4n+1)λ^(4n) ))  Ω = ∫_0 ^( 1) ln(1+x^4 )dx = 4ln(1) + Σ_(n=1) ^∞ (((−1))/(n(4n+1)))  Ω = Σ_(n=1) ^∞ (((−1)^(n−1) )/(n(4n+1))) = (π/( (√2))) − 4 + ln(2) + (√2)coth^(−1) ((√2))
f(λ)=01ln(x4+λ4)dx=01ln(λ4((xλ)4+1))dxf(λ)=401ln(λ)dx+01ln(1+x4λ4)dxf(λ)=4ln(λ)+n=1(1)n1n01(xλ)4ndxf(λ)=4ln(λ)+n=1(1)n1n(4n+1)λ4nΩ=01ln(1+x4)dx=4ln(1)+n=1(1)n(4n+1)Ω=n=1(1)n1n(4n+1)=π24+ln(2)+2coth1(2)

Leave a Reply

Your email address will not be published. Required fields are marked *