Menu Close

calculate-f-0-e-2x-e-x-x-2-e-x-2-dx-with-gt-0-1-find-the-value-of-0-e-2x-e-x-x-2-e-2x-2-dx-




Question Number 42708 by prof Abdo imad last updated on 01/Sep/18
calculate  f(α)=∫_0 ^∞     ((e^(−2x) −e^(−x) )/x^2 ) e^(−αx^2 ) dx  with α>0  1) find the value of    ∫_0 ^∞     ((e^(−2x)  −e^(−x) )/x^2 ) e^(−2x^2 ) dx
calculatef(α)=0e2xexx2eαx2dxwithα>01)findthevalueof0e2xexx2e2x2dx
Commented by maxmathsup by imad last updated on 02/Sep/18
1) f^′ (α) = −∫_0 ^(+∞)   (e^(−2x) −e^(−x) )e^(−αx^2 ) dx =∫_0 ^∞   e^(−αx^2 −x) dx −∫_0 ^∞  e^(−αx^2 −2x) dx  but ∫_0 ^∞    e^(−αx^2 −x) dx =∫_0 ^∞     e^(−{((√α)x)^2   +2 (((√α)x)/(2(√α)))   + (1/(4α))−(1/(4α)))) dx =∫_0 ^∞   e^(−{((√α)x +(1/(2(√α))))^2 } +(1/(4α)))  dx   =_((√α)x  +(1/(2(√α))) =t)      e^(1/(4α))  ∫_0 ^∞     e^(−t^2    )  (dt/( (√α))) =((√π)/2)   (e^(1/(4α)) /( (√α))) ⇒ f(α) = ∫_. ^α  ((√π)/2) (e^(1/(4x)) /( (√x)))dx +c  =_((√x)=u)    ((√π)/2)  ∫_. ^(√α)  (e^(1/(4u^2 )) /u)(2u)du +c = (√π) ∫_. ^(√α)  e^(1/(4u^2 ))  du +c ⇒f(α) =(√π) ∫_1 ^(√α)  e^(1/(4u^2 ))   +c  c =f(1) = ∫_0 ^∞   ((e^(−x^2 −2x) −e^(−x^2 −x) )/x^2 )dx  2) ∫_0 ^∞    ((e^(−2x)  −e^(−x) )/x^2 ) e^(−2x^2 ) dx =f(2) = (√π) ∫_1 ^(√2)  e^(1/(4u^2 ))  du  +f(1) ....
1)f(α)=0+(e2xex)eαx2dx=0eαx2xdx0eαx22xdxbut0eαx2xdx=0e{(αx)2+2αx2α+14α14α)dx=0e{(αx+12α)2}+14αdx=αx+12α=te14α0et2dtα=π2e14ααf(α)=.απ2e14xxdx+c=x=uπ2.αe14u2u(2u)du+c=π.αe14u2du+cf(α)=π1αe14u2+cc=f(1)=0ex22xex2xx2dx2)0e2xexx2e2x2dx=f(2)=π12e14u2du+f(1).

Leave a Reply

Your email address will not be published. Required fields are marked *