Menu Close

calculate-f-0-e-x-cos-pi-x-dx-with-gt-0-




Question Number 37898 by abdo mathsup 649 cc last updated on 19/Jun/18
calculate f(λ) = ∫_0 ^(+∞)   e^(−λx)  cos(π[x])dx  withλ>0
calculatef(λ)=0+eλxcos(π[x])dxwithλ>0
Commented by prof Abdo imad last updated on 19/Jun/18
f(λ)=Σ_(n=0) ^∞   ∫_n ^(n+1)  e^(−λx)  cos(nπ)dx  =Σ_(n=0) ^∞ (−1)^n   ∫_n ^(n+1)  e^(−λx) dx  =Σ_(n=0) ^∞  (−1)^n [−(1/λ) e^(−λx) ]_n ^(n+1)   =(1/λ)Σ_(n=0) ^∞  (−1)^(n+1)  ( e^(−λ(n+1))  −e^(−λn) )  =(1/λ)Σ_(n=0) ^∞   (−1)^n  e^(−λn)  −(1/λ)Σ_(n=0) ^∞  (−1)^n  e^(−λ(n+1))   =(1/λ) Σ_(n=0) ^∞  (−e^(−λ) )^n   −(e^(−λ) /λ) Σ_(n=0) ^∞  (−e^(−λ) )^n   =((1−e^(−λ) )/λ)  (1/(1+e^(−λ) )) ⇒  f(λ) = ((1−e^(−λ) )/(λ(1+e^(−λ) )))
f(λ)=n=0nn+1eλxcos(nπ)dx=n=0(1)nnn+1eλxdx=n=0(1)n[1λeλx]nn+1=1λn=0(1)n+1(eλ(n+1)eλn)=1λn=0(1)neλn1λn=0(1)neλ(n+1)=1λn=0(eλ)neλλn=0(eλ)n=1eλλ11+eλf(λ)=1eλλ(1+eλ)
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
[x]=0    1>x≥0  [x]=1   2>x≥1  [x]=2  3>x≥2    thus the value of Π[x] is intregal multiple of  Π...hence value of cos(Π[x]) oscillates  eitther +1 or −1  so the given intregal has two value  1)∫_0 ^(+∞) e^(−λx) ×1×dx  =∣(e^(−λx) /(−λ))∣_0 ^∞   =((−1)/λ)((1/e^∞ )−(1/e^0 ))=(1/λ)  2)∫_0 ^(+∞) e^(−λx) ×−1×dx  =−1×∣(e^(−λx) /(−λ))∣_0 ^∞  =(1/λ)((1/e^∞ )−(1/e^0 ))=−(1/λ)
[x]=01>x0[x]=12>x1[x]=23>x2thusthevalueofΠ[x]isintregalmultipleofΠhencevalueofcos(Π[x])oscillateseitther+1or1sothegivenintregalhastwovalue1)0+eλx×1×dx=∣eλxλ0=1λ(1e1e0)=1λ2)0+eλx×1×dx=1×eλxλ0=1λ(1e1e0)=1λ

Leave a Reply

Your email address will not be published. Required fields are marked *