Menu Close

calculate-f-1-i-x-2-dx-




Question Number 36919 by maxmathsup by imad last updated on 07/Jun/18
calculate f(α)= ∫_(−∞) ^(+∞)  (1+αi)^(−x^2 ) dx .
calculatef(α)=+(1+αi)x2dx.
Commented by abdo.msup.com last updated on 10/Jun/18
we have 1+αi =(√(1+α^2 ))((1/( (√(1+α^2 )))) +(α/( (√(1+α^2 ))))i)  =r e^(iθ)   ⇒ r =(√(1+α^2 ))   and  cosθ =(1/( (√(1+α^2 ))))  sinθ = (α/( (√(1+α^2 )))) ⇒tanθ =α ⇒θ=arctan(α)  1+αi =r e^(i arctan(α))  ⇒  f(α) = ∫_(−∞) ^(+∞)   (r e^(iarctan(α)) )^(−x^2 ) dx  =∫_(−∞) ^(+∞)  (e^(ln(r)+iarctan(α)) )^(−x^2 ) dx  =∫_(−∞) ^(+∞)   e^(−(ln((√(1+α^2  ))+i arctan(α))^ x^2 ) dx   changement (√(ln((√(1+α^2 )))+i artan(α)))x=t  give  f(α)= (1/( (√(ln((√(1+α^2 ))+i arctan(α))))) ∫_(−∞) ^(+∞)  e^(−t^2 ) dt  =  ((√π)/( (√(ln((√(1+α^2 )))+i arctan(α))))).
wehave1+αi=1+α2(11+α2+α1+α2i)=reiθr=1+α2andcosθ=11+α2sinθ=α1+α2tanθ=αθ=arctan(α)1+αi=reiarctan(α)f(α)=+(reiarctan(α))x2dx=+(eln(r)+iarctan(α))x2dx=+e(ln(1+α2+iarctan(α))x2dxchangementln(1+α2)+iartan(α)x=tgivef(α)=1ln(1+α2+iarctan(α)+et2dt=πln(1+α2)+iarctan(α).

Leave a Reply

Your email address will not be published. Required fields are marked *