Menu Close

calculate-f-a-0-cos-sh-2x-x-2-a-2-dx-and-g-a-0-cos-sh-2x-x-2-a-2-2-a-gt-0-




Question Number 96198 by mathmax by abdo last updated on 30/May/20
calculate f(a) =∫_0 ^∞   ((cos(sh(2x)))/(x^2  +a^2 ))dx and g(a) =∫_0 ^∞  ((cos(sh(2x)))/((x^2  +a^2 )^2 ))   (a>0)
calculatef(a)=0cos(sh(2x))x2+a2dxandg(a)=0cos(sh(2x))(x2+a2)2(a>0)
Answered by mathmax by abdo last updated on 01/Jun/20
f(a) =∫_0 ^∞  ((cos(sh(2x)))/(x^2  +a^2 ))dx ⇒f(a) =_(x=at)    ∫_0 ^∞   ((cos(sh(2at)))/(a^2 (t^2  +1)))adt  =(1/a)∫_0 ^∞   ((cos(sh(2at)))/(t^2  +1))dt ⇒2f(a) =(1/a)∫_(−∞) ^(+∞)  ((cos(sh(2at)))/(t^2  +1))dt  ⇒2af(a) =Re(∫_(−∞) ^(+∞)  (e^(ish(2at)) /(t^2  +1))dt)  let ϕ(z) =(e^(ish(2az)) /(z^2  +1)) ⇒  ϕ(z) =(e^(ish(2az)) /((z−i)(z+i)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i) =2iπ×(e^(ish(2ai)) /(2i)) =π e^(ish(2ai))   but  sh(2ai) =sin(2a) ⇒e^(ish(2ai))  =e^(isin(2a))  =cos(sin(2a))+isin(sin(2a)) ⇒  2af(a) =Re(∫_0 ^∞ ϕ(z)dz) =cos(sin(2a)) ⇒f(a) =((cos(sin(2a)))/(2a))
f(a)=0cos(sh(2x))x2+a2dxf(a)=x=at0cos(sh(2at))a2(t2+1)adt=1a0cos(sh(2at))t2+1dt2f(a)=1a+cos(sh(2at))t2+1dt2af(a)=Re(+eish(2at)t2+1dt)letφ(z)=eish(2az)z2+1φ(z)=eish(2az)(zi)(z+i)residustheoremgive+φ(z)dz=2iπRes(φ,i)=2iπ×eish(2ai)2i=πeish(2ai)butsh(2ai)=sin(2a)eish(2ai)=eisin(2a)=cos(sin(2a))+isin(sin(2a))2af(a)=Re(0φ(z)dz)=cos(sin(2a))f(a)=cos(sin(2a))2a
Commented by mathmax by abdo last updated on 01/Jun/20
we have f^′ (a) =−∫_0 ^∞   ((2a coz(sh(2x)))/((x^2  +a^2 )^2 ))dx ⇒  ∫_0 ^∞   ((cos(sh(2x)))/((x^2  +a^2 )^2 ))dx =−((f^′ (a))/(2a))   we have f(a) =((cos(sin(2a)))/(2a)) ⇒  f^′ (a) =((−2cos(2a)sin(sin(2a)(2a)−2 cos(sin(2a))/(4a^2 )) ⇒  ∫_0 ^∞   ((cos(sh(2x)))/((x^2  +a^2 )^2 ))dx =((2acos(2a)sin(sin(2a)+ cos(sin(2a)))/(4a^3 ))
wehavef(a)=02acoz(sh(2x))(x2+a2)2dx0cos(sh(2x))(x2+a2)2dx=f(a)2awehavef(a)=cos(sin(2a))2af(a)=2cos(2a)sin(sin(2a)(2a)2cos(sin(2a)4a20cos(sh(2x))(x2+a2)2dx=2acos(2a)sin(sin(2a)+cos(sin(2a))4a3

Leave a Reply

Your email address will not be published. Required fields are marked *