Menu Close

calculate-f-a-0-e-x-2-a-x-2-dx-with-a-gt-0-




Question Number 79107 by mathmax by abdo last updated on 22/Jan/20
calculate f(a) =∫_0 ^∞  e^(−(x^2  +(a/x^2 ))) dx with a>0
calculatef(a)=0e(x2+ax2)dxwitha>0
Commented by mathmax by abdo last updated on 23/Jan/20
f(a)=∫_0 ^∞  e^(−(x^2  +(a/x^2 ))) dx  changement x=(1/t) give  f(a)=−∫_0 ^∞   e^(−((1/t^2 )+at^2 )) (((−dt)/t^2 )) =∫_0 ^∞   (e^(−(at^2  +(1/t^2 ))) /t^2 )dt  ⇒f^′ (a) =−∫_0 ^∞   e^(−(at^2  +(1/t^2 ))) dt =_((√a)t =x)  −(1/( (√a)))∫_0 ^∞  e^(−{x^2 +(a/x^2 )})  dx  =−(1/( (√a)))f(a)⇒((f^′ (a))/(f(a))) =−(1/( (√a))) ⇒ln∣f(a)∣=−2(√a) +c  f>0 ⇒f(a) =k e^(−2(√a))   k=f(0) =∫_0 ^∞  e^(−x^2 ) dx =((√π)/2) ⇒f(x) =((√π)/2) e^(−2(√a))
f(a)=0e(x2+ax2)dxchangementx=1tgivef(a)=0e(1t2+at2)(dtt2)=0e(at2+1t2)t2dtf(a)=0e(at2+1t2)dt=at=x1a0e{x2+ax2}dx=1af(a)f(a)f(a)=1alnf(a)∣=2a+cf>0f(a)=ke2ak=f(0)=0ex2dx=π2f(x)=π2e2a
Answered by ~blr237~ last updated on 22/Jan/20
let state u=(1/x)  then dx=−(du/u^2 )   f(a)=∫_0 ^∞ e^(−((1/u^2 )+au^2 )) (du/u^2 )   f∈C^(1 )  cause for all a>0 ∣e^(−(x^2 +(a/x^2 ))) ∣≤e^(−x^2 )   and ∫_(0 ) ^∞ e^(−x^2 ) dx=((√π)/2)  so converges  Now we can write   (df/da)=−∫_0 ^∞ e^(−(au^2 +(1/u^2 ))) du       =−(1/( (√a)))∫_0 ^∞ e^(−[(u(√a))^2 +(a/((u(√a))^2 ))]) d(u(√a))      =−(1/( (√a))) ∫_(0 ) ^∞ e^(−(v^2 +(a/v^2 ))) dv     with v=u(√a)      So   (df/da)=−(1/( (√a))) f(a)  Then  ln∣f(a)∣=−2(√a) +c ⇒f(a)=ke^(−2(√a))   with k>0  we know that lim_(a→0)  f(a)=k=((√π)/2)   Finaly    f(a)=((√π)/2) e^(−2(√a))
letstateu=1xthendx=duu2f(a)=0e(1u2+au2)duu2fC1causeforalla>0e(x2+ax2)∣⩽ex2and0ex2dx=π2soconvergesNowwecanwritedfda=0e(au2+1u2)du=1a0e[(ua)2+a(ua)2]d(ua)=1a0e(v2+av2)dvwithv=uaSodfda=1af(a)Thenlnf(a)∣=2a+cf(a)=ke2awithk>0weknowthatlima0f(a)=k=π2Finalyf(a)=π2e2a
Commented by msup trace by abdo last updated on 22/Jan/20
thanks sir
thankssir
Answered by mind is power last updated on 22/Jan/20
on pose x=a^(1/4) u  ⇒f(a)=∫_0 ^(+∞) a^(1/4) e^(−(√a)(x^2 +(1/x^2 ))) dx  x=(1/y)⇒  =a^(1/4) ∫_0 ^(+∞) e^(−(√a)(y^2 +(1/y^2 ))) (dy/y^2 )  ⇒2f(a)a^(−(1/4)) =∫_0 ^(+∞) (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 −2(√a))   ⇒2f(a)a^(−(1/4)) e^(2(√a)) =∫_0 ^(+∞) (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 ) dy  =∫_0 ^1 (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 ) +∫_1 ^(+∞) (1+(1/y^2 ))e^(−(√a)(y−(1/y))^2 ) dy  u=y−(1/y),in first t=(1/y)in 2nd⇒  ⇒∫_0 ^(+∞)  e^(−(√a)u^2 ) du +∫_0 ^1 (1+(1/t^2 ))e^(−(√a)(t−(1/t))^2 ) dt  =2∫_0 ^(+∞) e^(−(√a)(u^2 )) du,w=a^(1/4) u⇒  =2∫_0 ^(+∞) e^(−w^2 ) (dw/a^(1/4) )=((√π)/a^(1/4) )  ⇒2f(a)a^(−(1/4)) e^(2(√a)) =((√π)/a^(1/4) )⇒f(a)=((√π)/(2e^(2(√a)) ))
onposex=a14uf(a)=0+a14ea(x2+1x2)dxx=1y=a140+ea(y2+1y2)dyy22f(a)a14=0+(1+1y2)ea(y1y)22a2f(a)a14e2a=0+(1+1y2)ea(y1y)2dy=01(1+1y2)ea(y1y)2+1+(1+1y2)ea(y1y)2dyu=y1y,infirstt=1yin2nd0+eau2du+01(1+1t2)ea(t1t)2dt=20+ea(u2)du,w=a14u=20+ew2dwa14=πa142f(a)a14e2a=πa14f(a)=π2e2a
Commented by msup trace by abdo last updated on 22/Jan/20
thanks sir.
thankssir.
Commented by mind is power last updated on 22/Jan/20
y′re welcom
yrewelcom

Leave a Reply

Your email address will not be published. Required fields are marked *